Lecture 12: Feature importances and model transparency#

UBC 2023-24

Instructor: Varada Kolhatkar

Imports, announcements, LOs#

Imports#

import os
import string
import sys
from collections import deque

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

sys.path.append(os.path.join(os.path.abspath("."), "code"))
import seaborn as sns
from plotting_functions import *
from sklearn import datasets
from sklearn.compose import ColumnTransformer, make_column_transformer
from sklearn.dummy import DummyClassifier, DummyRegressor
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression, Ridge
from sklearn.model_selection import (
    GridSearchCV,
    RandomizedSearchCV,
    cross_val_score,
    cross_validate,
    train_test_split,
)
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, StandardScaler
from sklearn.svm import SVC, SVR
from sklearn.tree import DecisionTreeClassifier
from utils import *

%matplotlib inline

Learning outcomes#

From this lecture, students are expected to be able to:

  • Interpret the coefficients of linear regression for ordinal, one-hot encoded categorical, and scaled numeric features.

  • Explain why interpretability is important in ML.

  • Use feature_importances_ attribute of sklearn models and interpret its output.

  • Apply SHAP to assess feature importances and interpret model predictions.

  • Explain force plot, summary plot, and dependence plot produced with shapely values.

import warnings

warnings.simplefilter(action="ignore", category=FutureWarning)

Announcement#

  • Midterm is next week.

    • Bring your laptop. Make sure that it’s fully charged.

    • Bring your UBC ID Card.

  • HW5 is available.

  • My OH on Thursday has been cancelled. I’ll hold OH on Tuesday instead.



I’m using seaborn in this lecture for easy heatmap plotting, which is not in the course environment. You can install it as follows.

> conda activate cpsc330
> conda install -c anaconda seaborn
import warnings

warnings.simplefilter(action="ignore", category=FutureWarning)

Data#

In the first part of this lecture, we’ll be using Kaggle House Prices dataset, the dataset we used in lecture 10. As usual, to run this notebook you’ll need to download the data. Unzip the data into a subdirectory called data. For this dataset, train and test have already been separated. We’ll be working with the train portion in this lecture.

df = pd.read_csv("data/housing-kaggle/train.csv")
train_df, test_df = train_test_split(df, test_size=0.10, random_state=123)
train_df.head()
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
302 303 20 RL 118.0 13704 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 1 2006 WD Normal 205000
767 768 50 RL 75.0 12508 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN Shed 1300 7 2008 WD Normal 160000
429 430 20 RL 130.0 11457 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 3 2009 WD Normal 175000
1139 1140 30 RL 98.0 8731 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 5 2007 WD Normal 144000
558 559 60 RL 57.0 21872 Pave NaN IR2 HLS AllPub ... 0 NaN NaN NaN 0 8 2008 WD Normal 175000

5 rows × 81 columns

  • The prediction task is predicting SalePrice given features related to properties.

  • Note that the target is numeric, not categorical.

train_df.shape
(1314, 81)

Let’s separate X and y#

X_train = train_df.drop(columns=["SalePrice"])
y_train = train_df["SalePrice"]

X_test = test_df.drop(columns=["SalePrice"])
y_test = test_df["SalePrice"]

Let’s identify feature types#

drop_features = ["Id"]
numeric_features = [
    "BedroomAbvGr",
    "KitchenAbvGr",
    "LotFrontage",
    "LotArea",
    "OverallQual",
    "OverallCond",
    "YearBuilt",
    "YearRemodAdd",
    "MasVnrArea",
    "BsmtFinSF1",
    "BsmtFinSF2",
    "BsmtUnfSF",
    "TotalBsmtSF",
    "1stFlrSF",
    "2ndFlrSF",
    "LowQualFinSF",
    "GrLivArea",
    "BsmtFullBath",
    "BsmtHalfBath",
    "FullBath",
    "HalfBath",
    "TotRmsAbvGrd",
    "Fireplaces",
    "GarageYrBlt",
    "GarageCars",
    "GarageArea",
    "WoodDeckSF",
    "OpenPorchSF",
    "EnclosedPorch",
    "3SsnPorch",
    "ScreenPorch",
    "PoolArea",
    "MiscVal",
    "YrSold",
]
ordinal_features_reg = [
    "ExterQual",
    "ExterCond",
    "BsmtQual",
    "BsmtCond",
    "HeatingQC",
    "KitchenQual",
    "FireplaceQu",
    "GarageQual",
    "GarageCond",
    "PoolQC",
]
ordering = [
    "Po",
    "Fa",
    "TA",
    "Gd",
    "Ex",
]  # if N/A it will just impute something, per below
ordering_ordinal_reg = [ordering] * len(ordinal_features_reg)
ordering_ordinal_reg
[['Po', 'Fa', 'TA', 'Gd', 'Ex'],
 ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
 ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
 ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
 ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
 ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
 ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
 ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
 ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
 ['Po', 'Fa', 'TA', 'Gd', 'Ex']]
ordinal_features_oth = [
    "BsmtExposure",
    "BsmtFinType1",
    "BsmtFinType2",
    "Functional",
    "Fence",
]
ordering_ordinal_oth = [
    ["NA", "No", "Mn", "Av", "Gd"],
    ["NA", "Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"],
    ["NA", "Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"],
    ["Sal", "Sev", "Maj2", "Maj1", "Mod", "Min2", "Min1", "Typ"],
    ["NA", "MnWw", "GdWo", "MnPrv", "GdPrv"],
]
categorical_features = list(
    set(X_train.columns)
    - set(numeric_features)
    - set(ordinal_features_reg)
    - set(ordinal_features_oth)
    - set(drop_features)
)
categorical_features
['Condition1',
 'MSSubClass',
 'LandSlope',
 'SaleCondition',
 'CentralAir',
 'MoSold',
 'Electrical',
 'GarageFinish',
 'Neighborhood',
 'GarageType',
 'Exterior1st',
 'MiscFeature',
 'Utilities',
 'Condition2',
 'MSZoning',
 'BldgType',
 'Heating',
 'Street',
 'LotConfig',
 'Exterior2nd',
 'MasVnrType',
 'HouseStyle',
 'Alley',
 'SaleType',
 'LandContour',
 'LotShape',
 'RoofMatl',
 'PavedDrive',
 'Foundation',
 'RoofStyle']
from sklearn.compose import ColumnTransformer, make_column_transformer

numeric_transformer = make_pipeline(SimpleImputer(strategy="median"), StandardScaler())
ordinal_transformer_reg = make_pipeline(
    SimpleImputer(strategy="most_frequent"),
    OrdinalEncoder(categories=ordering_ordinal_reg),
)

ordinal_transformer_oth = make_pipeline(
    SimpleImputer(strategy="most_frequent"),
    OrdinalEncoder(categories=ordering_ordinal_oth),
)

categorical_transformer = make_pipeline(
    SimpleImputer(strategy="constant", fill_value="missing"),
    OneHotEncoder(handle_unknown="ignore", sparse=False),
)

preprocessor = make_column_transformer(
    ("drop", drop_features),
    (numeric_transformer, numeric_features),
    (ordinal_transformer_reg, ordinal_features_reg),
    (ordinal_transformer_oth, ordinal_features_oth),
    (categorical_transformer, categorical_features),
)
preprocessor.fit(X_train)
preprocessor.named_transformers_
{'drop': 'drop',
 'pipeline-1': Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='median')),
                 ('standardscaler', StandardScaler())]),
 'pipeline-2': Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),
                 ('ordinalencoder',
                  OrdinalEncoder(categories=[['Po', 'Fa', 'TA', 'Gd', 'Ex'],
                                             ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
                                             ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
                                             ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
                                             ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
                                             ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
                                             ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
                                             ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
                                             ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
                                             ['Po', 'Fa', 'TA', 'Gd', 'Ex']]))]),
 'pipeline-3': Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='most_frequent')),
                 ('ordinalencoder',
                  OrdinalEncoder(categories=[['NA', 'No', 'Mn', 'Av', 'Gd'],
                                             ['NA', 'Unf', 'LwQ', 'Rec', 'BLQ',
                                              'ALQ', 'GLQ'],
                                             ['NA', 'Unf', 'LwQ', 'Rec', 'BLQ',
                                              'ALQ', 'GLQ'],
                                             ['Sal', 'Sev', 'Maj2', 'Maj1',
                                              'Mod', 'Min2', 'Min1', 'Typ'],
                                             ['NA', 'MnWw', 'GdWo', 'MnPrv',
                                              'GdPrv']]))]),
 'pipeline-4': Pipeline(steps=[('simpleimputer',
                  SimpleImputer(fill_value='missing', strategy='constant')),
                 ('onehotencoder',
                  OneHotEncoder(handle_unknown='ignore', sparse=False,
                                sparse_output=False))])}
ohe_columns = list(
    preprocessor.named_transformers_["pipeline-4"]
    .named_steps["onehotencoder"]
    .get_feature_names_out(categorical_features)
)
new_columns = (
    numeric_features + ordinal_features_reg + ordinal_features_oth + ohe_columns
)
X_train_enc = pd.DataFrame(
    preprocessor.transform(X_train), index=X_train.index, columns=new_columns
)
X_train_enc
BedroomAbvGr KitchenAbvGr LotFrontage LotArea OverallQual OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 ... Foundation_PConc Foundation_Slab Foundation_Stone Foundation_Wood RoofStyle_Flat RoofStyle_Gable RoofStyle_Gambrel RoofStyle_Hip RoofStyle_Mansard RoofStyle_Shed
302 0.154795 -0.222647 2.312501 0.381428 0.663680 -0.512408 0.993969 0.840492 0.269972 -0.961498 ... 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
767 1.372763 -0.222647 0.260890 0.248457 -0.054669 1.285467 -1.026793 0.016525 -0.573129 0.476092 ... 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
429 0.154795 -0.222647 2.885044 0.131607 -0.054669 -0.512408 0.563314 0.161931 -0.573129 1.227559 ... 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
1139 0.154795 -0.222647 1.358264 -0.171468 -0.773017 -0.512408 -1.689338 -1.679877 -0.573129 0.443419 ... 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
558 0.154795 -0.222647 -0.597924 1.289541 0.663680 -0.512408 0.828332 0.598149 -0.573129 0.354114 ... 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1041 1.372763 -0.222647 -0.025381 -0.127107 -0.054669 2.184405 -0.165485 0.743555 0.843281 -0.090231 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
1122 0.154795 -0.222647 -0.025381 -0.149788 -1.491366 -2.310284 -0.496757 -1.389065 -0.573129 -0.961498 ... 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
1346 0.154795 -0.222647 -0.025381 1.168244 0.663680 1.285467 -0.099230 0.888961 -0.573129 -0.314582 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
1406 -1.063173 -0.222647 0.022331 -0.203265 -0.773017 1.285467 0.033279 1.082835 -0.573129 0.467379 ... 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
1389 0.154795 -0.222647 -0.454788 -0.475099 -0.054669 0.386530 -0.993666 -1.679877 -0.573129 -0.144686 ... 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

1314 rows × 262 columns

X_train_enc.shape
(1314, 262)
lr_pipe = make_pipeline(preprocessor, Ridge())
scores = cross_validate(lr_pipe, X_train, y_train, return_train_score=True)
pd.DataFrame(scores)
fit_time score_time test_score train_score
0 0.029269 0.007910 0.835749 0.916722
1 0.025759 0.007089 0.810073 0.919198
2 0.024959 0.006794 0.831611 0.912395
3 0.024889 0.006736 0.843992 0.914003
4 0.024066 0.008359 0.548831 0.920462





Feature importances#

  • How does the output depend upon the input?

  • How do the predictions change as a function of a particular feature?

  • If the model is bad interpretability does not make sense.

SimpleFeature correlations#

  • Let’s look at the correlations between various features with other features and the target in our encoded data (first row/column).

  • In simple terms here is how you can interpret correlations between two variables \(X\) and \(Y\):

    • If \(Y\) goes up when \(X\) goes up, we say \(X\) and \(Y\) are positively correlated.

    • If \(Y\) goes down when \(X\) goes up, we say \(X\) and \(Y\) are negatively correlated.

    • If \(Y\) is unchanged when \(X\) changes, we say \(X\) and \(Y\) are uncorrelated.

Let’s examine the correlations among different columns, including the target column.

cor = pd.concat((y_train, X_train_enc), axis=1).iloc[:, :10].corr()
plt.figure(figsize=(8, 6))
sns.set(font_scale=0.8)
sns.heatmap(cor, annot=True, cmap=plt.cm.Blues);
../_images/08bb0634c6f5a8594083eb48b234459243307febb22faeab0b06c7d7d8982ae8.png
  • We can immediately see that SalePrice is highly correlated with OverallQual.

  • This is an early hint that OverallQual is a useful feature in predicting SalePrice.

  • However, this approach is extremely simplistic.

    • It only looks at each feature in isolation.

    • It only looks at linear associations:

      • What if SalePrice is high when BsmtFullBath is 2 or 3, but low when it’s 0, 1, or 4? They might seem uncorrelated.

cor = pd.concat((y_train, X_train_enc), axis=1).iloc[:, 10:15].corr()
plt.figure(figsize=(4, 4))
sns.set(font_scale=0.8)
sns.heatmap(cor, annot=True, cmap=plt.cm.Blues);
../_images/425cbe3f8410fb4dbf4398bed212e135fafad7571cece542713299e433f8b202.png
  • Looking at this diagram also tells us the relationship between features.

    • For example, 1stFlrSF and TotalBsmtSF are highly correlated.

    • Do we need both of them?

    • If our model says 1stFlrSF is very important and TotalBsmtSF is very unimportant, do we trust those values?

    • Maybe TotalBsmtSF only “becomes important” if 1stFlrSF is removed.

    • Sometimes the opposite happens: a feature only becomes important if another feature is added.



Feature importances in linear models#

  • With linear regression we can look at the coefficients for each feature.

  • Overall idea: predicted price = intercept + \(\sum_i\) coefficient i \(\times\) feature i.

lr = make_pipeline(preprocessor, Ridge())
lr.fit(X_train, y_train);

Let’s look at the coefficients.

lr_coefs = pd.DataFrame(
    data=lr.named_steps["ridge"].coef_, index=new_columns, columns=["Coefficient"]
)
lr_coefs.head(20)
Coefficient
BedroomAbvGr -3717.542624
KitchenAbvGr -4552.332671
LotFrontage -1582.710031
LotArea 5118.035161
OverallQual 12498.401830
OverallCond 4854.438906
YearBuilt 4234.888066
YearRemodAdd 317.185155
MasVnrArea 5253.253432
BsmtFinSF1 3681.749118
BsmtFinSF2 581.237935
BsmtUnfSF -1273.072243
TotalBsmtSF 2759.043319
1stFlrSF 6744.462545
2ndFlrSF 13407.646050
LowQualFinSF -447.627722
GrLivArea 15992.080694
BsmtFullBath 2305.121599
BsmtHalfBath 500.215865
FullBath 2836.007434

Let’s try to interpret coefficients for different types of features.

Ordinal features#

  • The ordinal features are easiest to interpret.

print(ordinal_features_reg)
['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageQual', 'GarageCond', 'PoolQC']
lr_coefs.loc["ExterQual"]
Coefficient    4236.969653
Name: ExterQual, dtype: float64
  • Increasing by one category of exterior quality (e.g. good -> excellent) increases the predicted price by \(\sim\$4195\).

    • Wow, that’s a lot!

    • Remember this is just what the model has learned. It doesn’t tell us how the world works.

one_example = X_test[:1]
one_example[["ExterQual"]]
ExterQual
147 Gd

Let’s perturb the example and change ExterQual to Ex.

one_example_perturbed = one_example.copy()
one_example_perturbed["ExterQual"] = "Ex"  # Change Gd to Ex
one_example_perturbed[["ExterQual"]]
ExterQual
147 Ex

How does the prediction change after changing ExterQual from Gd to Ex?

print("Prediction on the original example: ", lr.predict(one_example))
print("Prediction on the perturbed example: ", lr.predict(one_example_perturbed))
print(
    "After changing ExterQual from Gd to Ex increased the prediction by: ",
    lr.predict(one_example_perturbed) - lr.predict(one_example),
)
Prediction on the original example:  [224865.34161762]
Prediction on the perturbed example:  [229102.31127015]
After changing ExterQual from Gd to Ex increased the prediction by:  [4236.96965253]

That’s exactly the learned coefficient for ExterQual!

lr_coefs.loc["ExterQual"]
Coefficient    4236.969653
Name: ExterQual, dtype: float64

So our interpretation is correct!

  • Increasing by one category of exterior quality (e.g. good -> excellent) increases the predicted price by \(\sim\$4195\).



Categorical features#

  • What about the categorical features?

  • We have created a number of columns for each category with OHE and each category gets it’s own coefficient.

print(categorical_features)
['Condition1', 'MSSubClass', 'LandSlope', 'SaleCondition', 'CentralAir', 'MoSold', 'Electrical', 'GarageFinish', 'Neighborhood', 'GarageType', 'Exterior1st', 'MiscFeature', 'Utilities', 'Condition2', 'MSZoning', 'BldgType', 'Heating', 'Street', 'LotConfig', 'Exterior2nd', 'MasVnrType', 'HouseStyle', 'Alley', 'SaleType', 'LandContour', 'LotShape', 'RoofMatl', 'PavedDrive', 'Foundation', 'RoofStyle']
lr_coefs_landslope = lr_coefs[lr_coefs.index.str.startswith("LandSlope")]
lr_coefs_landslope
Coefficient
LandSlope_Gtl 468.638169
LandSlope_Mod 7418.923432
LandSlope_Sev -7887.561602
  • We can talk about switching from one of these categories to another by picking a “reference” category:

lr_coefs_landslope - lr_coefs_landslope.loc["LandSlope_Gtl"]
Coefficient
LandSlope_Gtl 0.000000
LandSlope_Mod 6950.285263
LandSlope_Sev -8356.199771
  • If you change the category from LandSlope_Gtl to LandSlope_Mod the prediction price goes up by \(\sim\$6963\)

  • If you change the category from LandSlope_Gtl to LandSlope_Sev the prediction price goes down by \(\sim\$8334\)

Note that this might not make sense in the real world but this is what our model decided to learn given this small amount of data.

one_example = X_test[:1]
one_example[['LandSlope']]
LandSlope
147 Gtl

Let’s perturb the example and change LandSlope to Mod.

one_example_perturbed = one_example.copy()
one_example_perturbed["LandSlope"] = "Mod"  # Change Gd to Ex
one_example_perturbed[["LandSlope"]]
LandSlope
147 Mod

How does the prediction change after changing LandSlope from Gtl to Mod?

print("Prediction on the original example: ", lr.predict(one_example))
print("Prediction on the perturbed example: ", lr.predict(one_example_perturbed))
print(
    "After changing ExterQual from Gd to Ex increased the prediction by: ",
    lr.predict(one_example_perturbed) - lr.predict(one_example),
)
Prediction on the original example:  [224865.34161762]
Prediction on the perturbed example:  [231815.62688064]
After changing ExterQual from Gd to Ex increased the prediction by:  [6950.28526302]

Our interpretation above is correct!

lr_coefs.sort_values(by="Coefficient")
Coefficient
RoofMatl_ClyTile -191169.071745
Condition2_PosN -105656.864205
Heating_OthW -27263.223804
MSZoning_C (all) -22001.877390
Exterior1st_ImStucc -19422.775311
... ...
PoolQC 34182.041704
RoofMatl_CompShg 36525.193346
Neighborhood_NridgHt 37546.996765
Neighborhood_StoneBr 39931.371722
RoofMatl_WdShngl 83603.013120

262 rows × 1 columns

  • For example, the above coefficient says that “If the roof is made of clay or tile, the predicted price is \$191K less”?

  • Do we believe these interpretations??

    • Do we believe this is how the predictions are being computed? Yes.

    • Do we believe that this is how the world works? No.

Note

If you did drop='first' (we didn’t) then you already have a reference class, and all the values are with respect to that one. The interpretation depends on whether we did drop='first', hence the hassle.



Interpreting coefficients of numeric features#

Let’s look at coefficients of PoolArea, LotFrontage, LotArea.

lr_coefs.loc[["PoolArea", "LotFrontage", "LotArea"]]
Coefficient
PoolArea 2817.196385
LotFrontage -1582.710031
LotArea 5118.035161

Intuition:

  • Tricky because numeric features are scaled!

  • Increasing PoolArea by 1 scaled unit increases the predicted price by \(\sim\$2822\).

  • Increasing LotArea by 1 scaled unit increases the predicted price by \(\sim\$5109\).

  • Increasing LotFrontage by 1 scaled unit decreases the predicted price by \(\sim\$1578\).

Does that sound reasonable?

  • For PoolArea and LotArea, yes.

  • For LotFrontage, that’s surprising. Something positive would have made more sense?

It might be the case that LotFrontage is correlated with some other variable, which might have a larger positive coefficient.

BTW, let’s make sure the predictions behave as expected:

Example showing how can we interpret coefficients of scaled features.#

  • What’s one scaled unit for LotArea?

  • The scaler subtracted the mean and divided by the standard deviation.

  • The division actually changed the scale!

  • For the unit conversion, we don’t care about the subtraction, but only the scaling.

scaler = preprocessor.named_transformers_["pipeline-1"]["standardscaler"]
lr_scales = pd.DataFrame(
    data=np.sqrt(scaler.var_), index=numeric_features, columns=["Scale"]
)
lr_scales.head()
Scale
BedroomAbvGr 0.821040
KitchenAbvGr 0.218760
LotFrontage 20.959139
LotArea 8994.471032
OverallQual 1.392082
  • It seems like LotArea was divided by 8994.471032 sqft.

lr_coefs.loc[["LotArea"]]
Coefficient
LotArea 5118.035161
  • The coefficient tells us that if we increase the scaled LotArea by one scaled unit the price would go up by \(\approx\$5118\).

  • One scaled unit represents \(\sim 8994\) sqft in the original scale.

Let’s examine whether this behaves as expected.

X_test_enc = pd.DataFrame(
    preprocessor.transform(X_test), index=X_test.index, columns=new_columns
)
one_ex_preprocessed = X_test_enc[:1]
one_ex_preprocessed
BedroomAbvGr KitchenAbvGr LotFrontage LotArea OverallQual OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 ... Foundation_PConc Foundation_Slab Foundation_Stone Foundation_Wood RoofStyle_Flat RoofStyle_Gable RoofStyle_Gambrel RoofStyle_Hip RoofStyle_Mansard RoofStyle_Shed
147 0.154795 -0.222647 -0.025381 -0.085415 0.66368 -0.512408 0.993969 0.792023 0.438592 -0.961498 ... 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

1 rows × 262 columns

orig_pred = lr.named_steps["ridge"].predict(one_ex_preprocessed)
orig_pred
/Users/kvarada/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/base.py:458: UserWarning: X has feature names, but Ridge was fitted without feature names
  warnings.warn(
array([224865.34161762])
one_ex_preprocessed_perturbed = one_ex_preprocessed.copy()
one_ex_preprocessed_perturbed["LotArea"] += 1  # we are adding one to the scaled LotArea
one_ex_preprocessed_perturbed
BedroomAbvGr KitchenAbvGr LotFrontage LotArea OverallQual OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 ... Foundation_PConc Foundation_Slab Foundation_Stone Foundation_Wood RoofStyle_Flat RoofStyle_Gable RoofStyle_Gambrel RoofStyle_Hip RoofStyle_Mansard RoofStyle_Shed
147 0.154795 -0.222647 -0.025381 0.914585 0.66368 -0.512408 0.993969 0.792023 0.438592 -0.961498 ... 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

1 rows × 262 columns

We are expecting an increase of $5118.03516073 in the prediction compared to the original value of LotArea.

perturbed_pred = lr.named_steps["ridge"].predict(one_ex_preprocessed_perturbed)
/Users/kvarada/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/base.py:458: UserWarning: X has feature names, but Ridge was fitted without feature names
  warnings.warn(
perturbed_pred - orig_pred
array([5118.03516073])

Our interpretation is correct!

  • Humans find it easier to think about features in their original scale.

  • How can we interpret this coefficient in the original scale?

  • If I increase original LotArea by one square foot then the predicted price would go up by this amount:

5118.03516073 / 8994.471032 # Coefficient learned on the scaled features / the scaling factor for this feature
0.5690201394302518
one_example = X_test[:1]
one_example
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... ScreenPorch PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition
147 148 60 RL NaN 9505 Pave NaN IR1 Lvl AllPub ... 0 0 NaN NaN NaN 0 5 2010 WD Normal

1 rows × 80 columns

Let’s perturb the example and add 1 to the LotArea.

one_example_perturbed = one_example.copy()
one_example_perturbed["LotArea"] += 1

if we add 8994.471032 to the original LotArea, the housing price prediction should go up by the coefficient 5109.35671794.

one_example_perturbed
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... ScreenPorch PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition
147 148 60 RL NaN 9506 Pave NaN IR1 Lvl AllPub ... 0 0 NaN NaN NaN 0 5 2010 WD Normal

1 rows × 80 columns

Prediction on the original example.

lr.predict(one_example)
array([224865.34161762])

Prediction on the perturbed example.

lr.predict(one_example_perturbed)
array([224865.91063776])
  • What’s the difference between predictions?

  • Does the difference make sense given the coefficient of the feature?

lr.predict(one_example_perturbed) - lr.predict(one_example)
array([0.56902014])

Yes! Our interpretation is correct.

  • That said don’t read too much into these coefficients without statistical training.

Interim summary#

  • Correlation among features might make coefficients completely uninterpretable.

  • Fairly straightforward to interpret coefficients of ordinal features.

  • In categorical features, it’s often helpful to consider one category as a reference point and think about relative importance.

  • For numeric features, relative importance is meaningful after scaling.

  • You have to be careful about the scale of the feature when interpreting the coefficients.

  • Remember that explaining the model \(\neq\) explaining the data or explaining how the world works.

  • The coefficients tell us only about the model and they might not accurately reflect the data.





Transparency and explainability of ML models: Motivation#

Activity (~5 mins)#

Suppose you have a machine learning model which gives you a 98% cross-validation score (with the metric of your interest) and 97% test score on a reasonably sized train and test sets. Since you have impressive cross-validation and test scores, you decide to just trust the model and use it as a black box, ignoring why it’s making certain predictions.

Give some scenarios when this might or might not be problematic. Write your thoughts in this Google document.





Why model transparency/interpretability?#

  • Ability to interpret ML models is crucial in many applications such as banking, healthcare, and criminal justice.

  • It can be leveraged by domain experts to diagnose systematic errors and underlying biases of complex ML systems.

Source

What is model interpretability?#



Data#

adult_df_large = pd.read_csv("data/adult.csv")
train_df, test_df = train_test_split(adult_df_large, test_size=0.2, random_state=42)
train_df_nan = train_df.replace("?", np.NaN)
test_df_nan = test_df.replace("?", np.NaN)
train_df_nan.head()
age workclass fnlwgt education education.num marital.status occupation relationship race sex capital.gain capital.loss hours.per.week native.country income
5514 26 Private 256263 HS-grad 9 Never-married Craft-repair Not-in-family White Male 0 0 25 United-States <=50K
19777 24 Private 170277 HS-grad 9 Never-married Other-service Not-in-family White Female 0 0 35 United-States <=50K
10781 36 Private 75826 Bachelors 13 Divorced Adm-clerical Unmarried White Female 0 0 40 United-States <=50K
32240 22 State-gov 24395 Some-college 10 Married-civ-spouse Adm-clerical Wife White Female 0 0 20 United-States <=50K
9876 31 Local-gov 356689 Bachelors 13 Married-civ-spouse Prof-specialty Husband White Male 0 0 40 United-States <=50K
numeric_features = ["age", "capital.gain", "capital.loss", "hours.per.week"]
categorical_features = [
    "workclass",
    "marital.status",
    "occupation",
    "relationship",
    "native.country",
]
ordinal_features = ["education"]
binary_features = ["sex"]
drop_features = ["race", "education.num", "fnlwgt"]
target_column = "income"
education_levels = [
    "Preschool",
    "1st-4th",
    "5th-6th",
    "7th-8th",
    "9th",
    "10th",
    "11th",
    "12th",
    "HS-grad",
    "Prof-school",
    "Assoc-voc",
    "Assoc-acdm",
    "Some-college",
    "Bachelors",
    "Masters",
    "Doctorate",
]
assert set(education_levels) == set(train_df["education"].unique())
numeric_transformer = make_pipeline(SimpleImputer(strategy="median"), StandardScaler())
tree_numeric_transformer = make_pipeline(SimpleImputer(strategy="median"))

categorical_transformer = make_pipeline(
    SimpleImputer(strategy="constant", fill_value="missing"),
    OneHotEncoder(handle_unknown="ignore"),
)

ordinal_transformer = make_pipeline(
    SimpleImputer(strategy="constant", fill_value="missing"),
    OrdinalEncoder(categories=[education_levels], dtype=int),
)

binary_transformer = make_pipeline(
    SimpleImputer(strategy="constant", fill_value="missing"),
    OneHotEncoder(drop="if_binary", dtype=int),
)

preprocessor = make_column_transformer(
    ("drop", drop_features),
    (numeric_transformer, numeric_features),
    (ordinal_transformer, ordinal_features),
    (binary_transformer, binary_features),
    (categorical_transformer, categorical_features),
)
X_train = train_df_nan.drop(columns=[target_column])
y_train = train_df_nan[target_column]

X_test = test_df_nan.drop(columns=[target_column])
y_test = test_df_nan[target_column]
# encode categorical class values as integers for XGBoost
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
y_train_num = label_encoder.fit_transform(y_train)
y_test_num = label_encoder.transform(y_test)

Do we have class imbalance?#

  • There is class imbalance. But without any context, both classes seem equally important.

  • Let’s use accuracy as our metric.

train_df_nan["income"].value_counts(normalize=True)
income
<=50K    0.757985
>50K     0.242015
Name: proportion, dtype: float64
scoring_metric = "accuracy"

Let’s store all the results in a dictionary called results.

results = {}

We are going to use models outside sklearn. Some of them cannot handle categorical target values. So we’ll convert them to integers using LabelEncoder.

y_train_num
array([0, 0, 0, ..., 1, 1, 0])

Baseline#

dummy = DummyClassifier()
results["Dummy"] = mean_std_cross_val_scores(
    dummy, X_train, y_train_num, return_train_score=True, scoring=scoring_metric
)

Different models#

from lightgbm.sklearn import LGBMClassifier
from xgboost import XGBClassifier

pipe_lr = make_pipeline(
    preprocessor, LogisticRegression(max_iter=2000, random_state=123)
)
pipe_rf = make_pipeline(preprocessor, RandomForestClassifier(random_state=123))
pipe_xgb = make_pipeline(
    preprocessor, XGBClassifier(random_state=123, eval_metric="logloss", verbosity=0)
)
pipe_lgbm = make_pipeline(preprocessor, LGBMClassifier(random_state=123, verbose=-1))
classifiers = {
    "logistic regression": pipe_lr,
    "random forest": pipe_rf,
    "XGBoost": pipe_xgb,
    "LightGBM": pipe_lgbm,
}
for (name, model) in classifiers.items():
    results[name] = mean_std_cross_val_scores(
        model, X_train, y_train_num, return_train_score=True, scoring=scoring_metric
    )
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
Cell In[68], line 2
      1 for (name, model) in classifiers.items():
----> 2     results[name] = mean_std_cross_val_scores(
      3         model, X_train, y_train_num, return_train_score=True, scoring=scoring_metric
      4     )

File ~/CS/2023-24/330/cpsc330-2023W1/lectures/code/utils.py:79, in mean_std_cross_val_scores(model, X_train, y_train, **kwargs)
     61 def mean_std_cross_val_scores(model, X_train, y_train, **kwargs):
     62     """
     63     Returns mean and std of cross validation
     64 
   (...)
     76         pandas Series with mean scores from cross_validation
     77     """
---> 79     scores = cross_validate(model, X_train, y_train, **kwargs)
     81     mean_scores = pd.DataFrame(scores).mean()
     82     std_scores = pd.DataFrame(scores).std()

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/utils/_param_validation.py:214, in validate_params.<locals>.decorator.<locals>.wrapper(*args, **kwargs)
    208 try:
    209     with config_context(
    210         skip_parameter_validation=(
    211             prefer_skip_nested_validation or global_skip_validation
    212         )
    213     ):
--> 214         return func(*args, **kwargs)
    215 except InvalidParameterError as e:
    216     # When the function is just a wrapper around an estimator, we allow
    217     # the function to delegate validation to the estimator, but we replace
    218     # the name of the estimator by the name of the function in the error
    219     # message to avoid confusion.
    220     msg = re.sub(
    221         r"parameter of \w+ must be",
    222         f"parameter of {func.__qualname__} must be",
    223         str(e),
    224     )

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:309, in cross_validate(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, return_train_score, return_estimator, return_indices, error_score)
    306 # We clone the estimator to make sure that all the folds are
    307 # independent, and that it is pickle-able.
    308 parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
--> 309 results = parallel(
    310     delayed(_fit_and_score)(
    311         clone(estimator),
    312         X,
    313         y,
    314         scorers,
    315         train,
    316         test,
    317         verbose,
    318         None,
    319         fit_params,
    320         return_train_score=return_train_score,
    321         return_times=True,
    322         return_estimator=return_estimator,
    323         error_score=error_score,
    324     )
    325     for train, test in indices
    326 )
    328 _warn_or_raise_about_fit_failures(results, error_score)
    330 # For callable scoring, the return type is only know after calling. If the
    331 # return type is a dictionary, the error scores can now be inserted with
    332 # the correct key.

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/utils/parallel.py:65, in Parallel.__call__(self, iterable)
     60 config = get_config()
     61 iterable_with_config = (
     62     (_with_config(delayed_func, config), args, kwargs)
     63     for delayed_func, args, kwargs in iterable
     64 )
---> 65 return super().__call__(iterable_with_config)

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/joblib/parallel.py:1863, in Parallel.__call__(self, iterable)
   1861     output = self._get_sequential_output(iterable)
   1862     next(output)
-> 1863     return output if self.return_generator else list(output)
   1865 # Let's create an ID that uniquely identifies the current call. If the
   1866 # call is interrupted early and that the same instance is immediately
   1867 # re-used, this id will be used to prevent workers that were
   1868 # concurrently finalizing a task from the previous call to run the
   1869 # callback.
   1870 with self._lock:

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/joblib/parallel.py:1792, in Parallel._get_sequential_output(self, iterable)
   1790 self.n_dispatched_batches += 1
   1791 self.n_dispatched_tasks += 1
-> 1792 res = func(*args, **kwargs)
   1793 self.n_completed_tasks += 1
   1794 self.print_progress()

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/utils/parallel.py:127, in _FuncWrapper.__call__(self, *args, **kwargs)
    125     config = {}
    126 with config_context(**config):
--> 127     return self.function(*args, **kwargs)

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:729, in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, return_estimator, split_progress, candidate_progress, error_score)
    727         estimator.fit(X_train, **fit_params)
    728     else:
--> 729         estimator.fit(X_train, y_train, **fit_params)
    731 except Exception:
    732     # Note fit time as time until error
    733     fit_time = time.time() - start_time

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/base.py:1152, in _fit_context.<locals>.decorator.<locals>.wrapper(estimator, *args, **kwargs)
   1145     estimator._validate_params()
   1147 with config_context(
   1148     skip_parameter_validation=(
   1149         prefer_skip_nested_validation or global_skip_validation
   1150     )
   1151 ):
-> 1152     return fit_method(estimator, *args, **kwargs)

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/pipeline.py:427, in Pipeline.fit(self, X, y, **fit_params)
    425     if self._final_estimator != "passthrough":
    426         fit_params_last_step = fit_params_steps[self.steps[-1][0]]
--> 427         self._final_estimator.fit(Xt, y, **fit_params_last_step)
    429 return self

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/base.py:1152, in _fit_context.<locals>.decorator.<locals>.wrapper(estimator, *args, **kwargs)
   1145     estimator._validate_params()
   1147 with config_context(
   1148     skip_parameter_validation=(
   1149         prefer_skip_nested_validation or global_skip_validation
   1150     )
   1151 ):
-> 1152     return fit_method(estimator, *args, **kwargs)

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/ensemble/_forest.py:456, in BaseForest.fit(self, X, y, sample_weight)
    445 trees = [
    446     self._make_estimator(append=False, random_state=random_state)
    447     for i in range(n_more_estimators)
    448 ]
    450 # Parallel loop: we prefer the threading backend as the Cython code
    451 # for fitting the trees is internally releasing the Python GIL
    452 # making threading more efficient than multiprocessing in
    453 # that case. However, for joblib 0.12+ we respect any
    454 # parallel_backend contexts set at a higher level,
    455 # since correctness does not rely on using threads.
--> 456 trees = Parallel(
    457     n_jobs=self.n_jobs,
    458     verbose=self.verbose,
    459     prefer="threads",
    460 )(
    461     delayed(_parallel_build_trees)(
    462         t,
    463         self.bootstrap,
    464         X,
    465         y,
    466         sample_weight,
    467         i,
    468         len(trees),
    469         verbose=self.verbose,
    470         class_weight=self.class_weight,
    471         n_samples_bootstrap=n_samples_bootstrap,
    472     )
    473     for i, t in enumerate(trees)
    474 )
    476 # Collect newly grown trees
    477 self.estimators_.extend(trees)

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/utils/parallel.py:65, in Parallel.__call__(self, iterable)
     60 config = get_config()
     61 iterable_with_config = (
     62     (_with_config(delayed_func, config), args, kwargs)
     63     for delayed_func, args, kwargs in iterable
     64 )
---> 65 return super().__call__(iterable_with_config)

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/joblib/parallel.py:1863, in Parallel.__call__(self, iterable)
   1861     output = self._get_sequential_output(iterable)
   1862     next(output)
-> 1863     return output if self.return_generator else list(output)
   1865 # Let's create an ID that uniquely identifies the current call. If the
   1866 # call is interrupted early and that the same instance is immediately
   1867 # re-used, this id will be used to prevent workers that were
   1868 # concurrently finalizing a task from the previous call to run the
   1869 # callback.
   1870 with self._lock:

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/joblib/parallel.py:1792, in Parallel._get_sequential_output(self, iterable)
   1790 self.n_dispatched_batches += 1
   1791 self.n_dispatched_tasks += 1
-> 1792 res = func(*args, **kwargs)
   1793 self.n_completed_tasks += 1
   1794 self.print_progress()

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/utils/parallel.py:127, in _FuncWrapper.__call__(self, *args, **kwargs)
    125     config = {}
    126 with config_context(**config):
--> 127     return self.function(*args, **kwargs)

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/ensemble/_forest.py:188, in _parallel_build_trees(tree, bootstrap, X, y, sample_weight, tree_idx, n_trees, verbose, class_weight, n_samples_bootstrap)
    185     elif class_weight == "balanced_subsample":
    186         curr_sample_weight *= compute_sample_weight("balanced", y, indices=indices)
--> 188     tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
    189 else:
    190     tree.fit(X, y, sample_weight=sample_weight, check_input=False)

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/base.py:1152, in _fit_context.<locals>.decorator.<locals>.wrapper(estimator, *args, **kwargs)
   1145     estimator._validate_params()
   1147 with config_context(
   1148     skip_parameter_validation=(
   1149         prefer_skip_nested_validation or global_skip_validation
   1150     )
   1151 ):
-> 1152     return fit_method(estimator, *args, **kwargs)

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/tree/_classes.py:959, in DecisionTreeClassifier.fit(self, X, y, sample_weight, check_input)
    928 @_fit_context(prefer_skip_nested_validation=True)
    929 def fit(self, X, y, sample_weight=None, check_input=True):
    930     """Build a decision tree classifier from the training set (X, y).
    931 
    932     Parameters
   (...)
    956         Fitted estimator.
    957     """
--> 959     super()._fit(
    960         X,
    961         y,
    962         sample_weight=sample_weight,
    963         check_input=check_input,
    964     )
    965     return self

File ~/miniconda3/envs/cpsc330/lib/python3.10/site-packages/sklearn/tree/_classes.py:443, in BaseDecisionTree._fit(self, X, y, sample_weight, check_input, missing_values_in_feature_mask)
    432 else:
    433     builder = BestFirstTreeBuilder(
    434         splitter,
    435         min_samples_split,
   (...)
    440         self.min_impurity_decrease,
    441     )
--> 443 builder.build(self.tree_, X, y, sample_weight, missing_values_in_feature_mask)
    445 if self.n_outputs_ == 1 and is_classifier(self):
    446     self.n_classes_ = self.n_classes_[0]

KeyboardInterrupt: 
pd.DataFrame(results).T
fit_time score_time test_score train_score
Dummy 0.002 (+/- 0.000) 0.001 (+/- 0.000) 0.758 (+/- 0.000) 0.758 (+/- 0.000)
logistic regression 0.708 (+/- 0.056) 0.011 (+/- 0.001) 0.849 (+/- 0.005) 0.850 (+/- 0.001)
random forest 7.214 (+/- 0.083) 0.087 (+/- 0.010) 0.847 (+/- 0.006) 0.979 (+/- 0.000)
XGBoost 0.564 (+/- 0.014) 0.017 (+/- 0.002) 0.870 (+/- 0.004) 0.898 (+/- 0.001)
LightGBM 0.162 (+/- 0.024) 0.022 (+/- 0.002) 0.872 (+/- 0.004) 0.888 (+/- 0.000)
  • Logistic regression is giving reasonable scores but not the best ones.

  • XGBoost and LightGBM are giving us the best CV scores.

  • Often simple models (e.g., linear models) are interpretable but not very accurate.

  • Complex models (e.g., LightGBM) are more accurate but less interpretable.

Source

Feature importances in linear models#

Let’s create and fit a pipeline with preprocessor and logistic regression.

pipe_lr = make_pipeline(preprocessor, LogisticRegression(max_iter=2000, random_state=2))
pipe_lr.fit(X_train, y_train_num);
ohe_feature_names = (
    pipe_rf.named_steps["columntransformer"]
    .named_transformers_["pipeline-4"]
    .named_steps["onehotencoder"]
    .get_feature_names_out(categorical_features)
    .tolist()
)
feature_names = (
    numeric_features + ordinal_features + binary_features + ohe_feature_names
)
feature_names[:15]
['age',
 'capital.gain',
 'capital.loss',
 'hours.per.week',
 'education',
 'sex',
 'workclass_Federal-gov',
 'workclass_Local-gov',
 'workclass_Never-worked',
 'workclass_Private',
 'workclass_Self-emp-inc',
 'workclass_Self-emp-not-inc',
 'workclass_State-gov',
 'workclass_Without-pay',
 'workclass_missing']
data = {
    "coefficient": pipe_lr.named_steps["logisticregression"].coef_.flatten().tolist(),
    "magnitude": np.absolute(
        pipe_lr.named_steps["logisticregression"].coef_.flatten().tolist()
    ),
}
coef_df = pd.DataFrame(data, index=feature_names).sort_values(
    "magnitude", ascending=False
)
coef_df[:10]
coefficient magnitude
capital.gain 2.355921 2.355921
marital.status_Married-AF-spouse 1.752323 1.752323
occupation_Priv-house-serv -1.426524 1.426524
marital.status_Married-civ-spouse 1.335259 1.335259
relationship_Wife 1.274059 1.274059
native.country_Columbia -1.086099 1.086099
occupation_Prof-specialty 1.070978 1.070978
occupation_Exec-managerial 1.048124 1.048124
native.country_Dominican-Republic -1.015952 1.015952
relationship_Own-child -1.001010 1.001010
  • Increasing capital.gain is likely to push the prediction towards “>50k” income class

  • Whereas occupation of private house service is likely to push the prediction towards “<=50K” income.

Can we get feature importances for non-linear models?



Model interpretability beyond linear models#

  • We will be looking at interpretability in terms of feature importances.

  • Note that there is no absolute or perfect way to get feature importances. But it’s useful to get some idea on feature importances. So we just try our best.

We will be looking at two ways to get feature importances.

  • sklearn’s feature_importances_ and permutation_importance

  • SHAP

sklearn’s feature_importances_ and permutation_importance#

Feature importance or variable importance is a score associated with a feature which tells us how “important” the feature is to the model.

Activity (~5 mins)#

Linear models learn a coefficient associated with each feature which tells us the importance of the feature to the model.

  • What might be some reasonable ways to calculate feature importances of the following models?

    • Decision trees

    • Linear SVMs

    • KNNs, RBF SVMs

  • Suppose you have correlated features in your dataset. Do you need to be careful about this when you examine feature importances?

Discuss with your neighbour and write your ideas in this Google doc.

Do we have correlated features?#

X_train_enc = preprocessor.fit_transform(X_train).todense()
corr_df = pd.DataFrame(X_train_enc, columns=feature_names).corr().abs()
corr_df[corr_df == 1] = 0 # Set the diagonal to 0. 
  • Let’s look at columns where any correlation number is > 0.80.

  • 0.80 is an arbitrary choice

high_corr = [column for column in corr_df.columns if any(corr_df[column] > 0.80)]
print(high_corr)
['workclass_missing', 'marital.status_Married-civ-spouse', 'occupation_missing', 'relationship_Husband']

Seems like there are some columns which are highly correlated.

corr_df['occupation_missing']['workclass_missing']
0.9977957422135846
corr_df['marital.status_Married-civ-spouse']['relationship_Husband']
0.8937442459553657
  • When we look at the feature importances, we should be mindful of these correlated features.

  • Remember the limitations of looking at simple linear correlations.

  • You should probably investigate multi-colinearity with more sophisticated approaches (e.g., variance inflation factors (VIF) from DSCI 561).

sklearn’s feature_importances_ attribute vs permutation_importance#

  • Feature importances can be

    • algorithm dependent, i.e., calculated based on the information given by the model algorithm (e.g., gini importance)

    • model agnostic (e.g., by measuring increase in prediction error after permuting feature values).

  • Different measures give insight into different aspects of your data and model.

Here you will find some drawbacks of using feature_importances_ attribute in the context of tree-based models.

Decision tree feature importances#

pipe_dt = make_pipeline(preprocessor, DecisionTreeClassifier(max_depth=3))
pipe_dt.fit(X_train, y_train_num);
data = {
    "Importance": pipe_dt.named_steps["decisiontreeclassifier"].feature_importances_,
}
pd.DataFrame(data=data, index=feature_names,).sort_values(
    by="Importance", ascending=False
)[:10]
Importance
marital.status_Married-civ-spouse 0.543351
capital.gain 0.294855
education 0.160727
age 0.001068
native.country_Guatemala 0.000000
native.country_Iran 0.000000
native.country_India 0.000000
native.country_Hungary 0.000000
native.country_Hong 0.000000
native.country_Honduras 0.000000
custom_plot_tree(pipe_dt.named_steps["decisiontreeclassifier"], feature_names = feature_names, fontsize=10)
../_images/f45cb9ffbee5e01b59cf09a5c08039ca0765925cba8b765b9184df9d4e972ffb.png

Let’s explore permutation importance.

  • For each feature this method evaluates the impact of permuting feature values

from sklearn.inspection import permutation_importance
def get_permutation_importance(model):
    X_train_perm = X_train.drop(columns=["race", "education.num", "fnlwgt"])
    result = permutation_importance(model, X_train_perm, y_train_num, n_repeats=10, random_state=123)
    perm_sorted_idx = result.importances_mean.argsort()
    plt.boxplot(
        result.importances[perm_sorted_idx].T,
        vert=False,
        labels=X_train_perm.columns[perm_sorted_idx],
    )
    plt.xlabel('Permutation feature importance')
    plt.show()
get_permutation_importance(pipe_dt)
../_images/f3f8449f78b2a54c28ec5cb6f6035b19ffd76bbe4233856e898e87d33586b044.png

Decision tree is primarily making all decisions based on three features: marital.status, education, and capital.gain.

Let’s create and fit a pipeline with preprocessor and random forest.

Random forest feature importances#

pipe_rf = make_pipeline(preprocessor, RandomForestClassifier(random_state=2))
pipe_rf.fit(X_train, y_train_num);

Which features are driving the predictions the most?

data = {
    "Importance": pipe_rf.named_steps["randomforestclassifier"].feature_importances_,
}
rf_imp_df = pd.DataFrame(
    data=data,
    index=feature_names,
).sort_values(by="Importance", ascending=False)
rf_imp_df[:8]
Importance
age 0.230412
education 0.122210
hours.per.week 0.114521
capital.gain 0.113815
marital.status_Married-civ-spouse 0.077887
relationship_Husband 0.044242
capital.loss 0.038287
marital.status_Never-married 0.025661
np.sum(pipe_rf.named_steps["randomforestclassifier"].feature_importances_)
0.9999999999999998
get_permutation_importance(pipe_rf)
../_images/a417d7d60852ce17bd9a14dde3050f81f79a2355b34d1e6f169cbdd1a92e7f7d.png

Random forest is using more features in the model compared to decision trees.

Key point#

  • Unlike the linear model coefficients, feature_importances_ do not have a sign!

    • They tell us about importance, but not an “up or down”.

    • Indeed, increasing a feature may cause the prediction to first go up, and then go down.

    • This cannot happen in linear models, because they are linear.

How can we get feature importances for non sklearn models?#

  • One way to do it is by using a tool called eli5.

Unfortunately, this is not compatible with the latest version of sklearn, which we are using.

conda install -c conda-forge eli5
  • Another popular way is using SHAP. You can install it using the following in the course conda environment.

conda install -c conda-forge shap





SHAP (SHapley Additive exPlanations) introduction#

Explaining a prediction#

Source

SHAP (SHapley Additive exPlanations)#

  • Based on the idea of shapely values. A shapely value is created for each example and each feature.

  • Can explain the prediction of an example by computing the contribution of each feature to the prediction.

  • Great visualizations

  • Support for different kinds of models; fast variants for tree-based models

  • Original paper: Lundberg and Lee, 2017

Our focus#

  • How to use it on our dataset?

  • How to generate and interpret plots created by SHAP?

  • We are not going to discuss how SHAP works.

Source

  • Start at a base rate (e.g., how often people get their loans rejected).

  • Add one feature at a time and see how it impacts the decision.

SHAP on LGBM model#

  • Let’s try it out on our best performing LightGBM model.

  • You should have shap in the course conda environment

Let’s create train and test dataframes with our transformed features.

X_train_enc = pd.DataFrame(
    data=preprocessor.transform(X_train).toarray(),
    columns=feature_names,
    index=X_train.index,
)
X_train_enc.head()
age capital.gain capital.loss hours.per.week education sex workclass_Federal-gov workclass_Local-gov workclass_Never-worked workclass_Private ... native.country_Puerto-Rico native.country_Scotland native.country_South native.country_Taiwan native.country_Thailand native.country_Trinadad&Tobago native.country_United-States native.country_Vietnam native.country_Yugoslavia native.country_missing
5514 -0.921955 -0.147166 -0.21768 -1.258387 8.0 1.0 0.0 0.0 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
19777 -1.069150 -0.147166 -0.21768 -0.447517 8.0 0.0 0.0 0.0 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
10781 -0.185975 -0.147166 -0.21768 -0.042081 13.0 0.0 0.0 0.0 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
32240 -1.216346 -0.147166 -0.21768 -1.663822 12.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
9876 -0.553965 -0.147166 -0.21768 -0.042081 13.0 1.0 0.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

5 rows × 85 columns

X_test_enc = pd.DataFrame(
    data=preprocessor.transform(X_test).toarray(),
    columns=feature_names,
    index=X_test.index,
)
X_test_enc.shape
(6513, 85)

Let’s get SHAP values for train and test data.

import shap

# Create a shap explainer object 
pipe_lgbm.named_steps["lgbmclassifier"].fit(X_train_enc, y_train)
lgbm_explainer = shap.TreeExplainer(pipe_lgbm.named_steps["lgbmclassifier"])
train_lgbm_shap_values = lgbm_explainer.shap_values(X_train_enc)
LightGBM binary classifier with TreeExplainer shap values output has changed to a list of ndarray
train_lgbm_shap_values
[array([[ 4.08151507e-01,  2.82025568e-01,  4.70162085e-02, ...,
         -1.03017665e-03,  0.00000000e+00, -1.69027185e-03],
        [ 5.46019608e-01,  2.77536150e-01,  4.69698010e-02, ...,
         -9.00720988e-04,  0.00000000e+00, -6.78058051e-04],
        [-4.39095422e-01,  2.50475372e-01,  6.51137414e-02, ...,
         -9.02446630e-04,  0.00000000e+00, -3.54676006e-04],
        ...,
        [-1.05137470e+00,  1.89706451e-01, -2.74798624e+00, ...,
         -1.13229595e-03,  0.00000000e+00, -1.31449687e-04],
        [-6.32247597e-01,  3.01432486e-01,  8.99744241e-02, ...,
         -1.03411038e-03,  0.00000000e+00,  4.04709519e-04],
        [ 1.15559528e+00,  2.32397724e-01,  5.55862988e-02, ...,
         -1.05290827e-03,  0.00000000e+00, -8.11336331e-04]]),
 array([[-4.08151507e-01, -2.82025568e-01, -4.70162085e-02, ...,
          1.03017665e-03,  0.00000000e+00,  1.69027185e-03],
        [-5.46019608e-01, -2.77536150e-01, -4.69698010e-02, ...,
          9.00720988e-04,  0.00000000e+00,  6.78058051e-04],
        [ 4.39095422e-01, -2.50475372e-01, -6.51137414e-02, ...,
          9.02446630e-04,  0.00000000e+00,  3.54676006e-04],
        ...,
        [ 1.05137470e+00, -1.89706451e-01,  2.74798624e+00, ...,
          1.13229595e-03,  0.00000000e+00,  1.31449687e-04],
        [ 6.32247597e-01, -3.01432486e-01, -8.99744241e-02, ...,
          1.03411038e-03,  0.00000000e+00, -4.04709519e-04],
        [-1.15559528e+00, -2.32397724e-01, -5.55862988e-02, ...,
          1.05290827e-03,  0.00000000e+00,  8.11336331e-04]])]
  • For each example, each feature, and each class we have a SHAP value.

  • SHAP values tell us how to fairly distribute the prediction among features.

  • For classification it’s a bit confusing. It gives SHAP matrix for all classes.

  • Let’s stick to shap values for class 1, i.e., income > 50K.

train_lgbm_shap_values[1].shape
(26048, 85)
test_lgbm_shap_values = lgbm_explainer.shap_values(X_test_enc)
test_lgbm_shap_values[1].shape
LightGBM binary classifier with TreeExplainer shap values output has changed to a list of ndarray
(6513, 85)



SHAP plots#

# load JS visualization code to notebook
shap.initjs()

Force plots#

  • Most useful!

  • Let’s try to explain predictions on a couple of examples from the test data.

  • I’m sampling some examples where target is <=50K and some examples where target is >50K.

y_test_reset = y_test.reset_index(drop=True)
y_test_reset
0       <=50K
1       <=50K
2       <=50K
3       <=50K
4       <=50K
        ...  
6508    <=50K
6509    <=50K
6510     >50K
6511    <=50K
6512     >50K
Name: income, Length: 6513, dtype: object
l50k_ind = y_test_reset[y_test_reset == "<=50K"].index.tolist()
g50k_ind = y_test_reset[y_test_reset == ">50K"].index.tolist()

ex_l50k_index = l50k_ind[10]
ex_g50k_index = g50k_ind[10]

Explaining a prediction#

Imagine that you are given the following test example.

X_test_enc.iloc[ex_l50k_index]
age                               0.476406
capital.gain                     -0.147166
capital.loss                      4.649658
hours.per.week                   -0.042081
education                         8.000000
                                    ...   
native.country_Trinadad&Tobago    0.000000
native.country_United-States      1.000000
native.country_Vietnam            0.000000
native.country_Yugoslavia         0.000000
native.country_missing            0.000000
Name: 345, Length: 85, dtype: float64

You get the following hard prediction, which you are interested in explaining.

pipe_lgbm.named_steps["lgbmclassifier"].predict(X_test_enc)[ex_l50k_index]
'<=50K'

You can first look at predict_proba output to get a better understanding of model confidence.

pipe_lgbm.named_steps["lgbmclassifier"].predict_proba(X_test_enc)[ex_l50k_index]
array([0.99240562, 0.00759438])
  • The model seems quite confident. But if we want to know more, for example, which feature values are playing a role in this specific prediction, we can use SHAP force plots.

  • Remember that we have SHAP values per feature per example. We’ll use these values to create SHAP force plot.

pd.DataFrame(
    test_lgbm_shap_values[1][ex_l50k_index, :],
    index=feature_names,
    columns=["SHAP values"],
)
SHAP values
age 0.723502
capital.gain -0.253426
capital.loss -0.256666
hours.per.week -0.096692
education -0.403715
... ...
native.country_Trinadad&Tobago 0.000000
native.country_United-States 0.003408
native.country_Vietnam 0.001051
native.country_Yugoslavia 0.000000
native.country_missing 0.000663

85 rows × 1 columns

SHAP will produce the following type of plots.

shap.force_plot(
    lgbm_explainer.expected_value[1], # expected value for class 1. 
    test_lgbm_shap_values[1][ex_l50k_index, :], # SHAP values associated with the example we want to explain
    X_test_enc.iloc[ex_l50k_index, :], # Feature vector of the example 
    matplotlib=True,
)
../_images/9adf6d15fd433026906ca9bcbb88b058b95b57b3b59bc6f5d91d44d00ee52ffd.png
  • The raw model score is much smaller than the base value, which is reflected in the prediction of <= 50k class.

  • sex = 1.0, scaled age = 0.48 are pushing the prediction towards higher score.

  • education = 8.0, occupation_Other-service = 1.0 and marital.status_Married-civ-spouse = 0.0 are pushing the prediction towards lower score.

pipe_lgbm.named_steps["lgbmclassifier"].classes_
array(['<=50K', '>50K'], dtype=object)

We can get the raw model output by passing raw_score=True in predict.

pipe_lgbm.named_steps["lgbmclassifier"].predict(X_test_enc, raw_score=True)
array([-1.76270194, -7.61912405, -0.45555535, ...,  1.13521135,
       -6.62873917, -0.84062193])

What’s the raw score of the example above we are trying to explain?

pipe_lgbm.named_steps["lgbmclassifier"].predict(X_test_enc, raw_score=True)[ex_l50k_index]
-4.872722908439952
  • The score matches with what we see in the force plot.

  • The base score above is the mean raw score. Our example has a lower raw score compared to the average raw score and the force plot tries to explain which feature values are bringing this score to a lower value.

pipe_lgbm.named_steps["lgbmclassifier"].predict(X_train_enc, raw_score=True).mean()
-2.336411423367732
lgbm_explainer.expected_value[1]  # on average this is the raw score for class 1
-2.3364114233677307

Note: a nice thing about SHAP values is that the feature importances sum to the prediction:

test_lgbm_shap_values[1][ex_l50k_index, :].sum() + lgbm_explainer.expected_value[1]
-4.8727229084399575



Now let’s try to explain another prediction.

  • The hard prediction here is 1.

  • From the predict_proba output it seems like the model is not too confident about the prediction.

pipe_lgbm.named_steps["lgbmclassifier"].predict(X_test_enc)[ex_g50k_index]
'>50K'
# X_test_enc.iloc[ex_g50k_index]
pipe_lgbm.named_steps["lgbmclassifier"].predict_proba(X_test_enc)[ex_g50k_index]
array([0.35997929, 0.64002071])

What’s the raw score for this example?

pipe_lgbm.named_steps["lgbmclassifier"].predict(X_test_enc, raw_score=True)[
    ex_g50k_index
]  # raw model score
0.5754540510801829
# pd.DataFrame(
#     test_lgbm_shap_values[1][ex_g50k_index, :],
#     index=feature_names,
#     columns=["SHAP values"],
# )
shap.force_plot(
    lgbm_explainer.expected_value[1],
    test_lgbm_shap_values[1][ex_g50k_index, :],
    X_test_enc.iloc[ex_g50k_index, :],
    matplotlib=True,
)
../_images/98ac8b5d5fc297d996a84171a9946fb4becea998e85634d544cbc597d3a541a4.png

Observations:

  • Everything is with respect to class 1 here.

  • The base value, i.e., the average raw score for class 1 is -2.336.

  • We see the forces that drive the prediction.

  • That is, we can see the main factors pushing it from the base value (average over the dataset) to this particular prediction.

  • Features that push the prediction to a higher value are shown in red.

  • Features that push the prediction to a lower value are shown in blue.



Global feature importance using SHAP#

Let’s look at the average SHAP values associated with each feature.

values = np.abs(train_lgbm_shap_values[1]).mean(
    0
)  # mean of shapely values in each column
pd.DataFrame(data=values, index=feature_names, columns=["SHAP"]).sort_values(
    by="SHAP", ascending=False
)[:10]
SHAP
marital.status_Married-civ-spouse 1.074859
age 0.805468
capital.gain 0.565589
education 0.417642
hours.per.week 0.324636
sex 0.185687
capital.loss 0.148519
marital.status_Never-married 0.139914
relationship_Own-child 0.108003
occupation_Prof-specialty 0.106276

Dependence plot#

shap.dependence_plot("age", train_lgbm_shap_values[1], X_train_enc)
../_images/20ecb0892d29e714c142562f27af480528ef05431db543a3c806f62521c1c559.png

The plot above shows effect of age feature on the prediction.

  • Each dot is a single prediction for examples above.

  • The x-axis represents values of the feature age (scaled).

  • The y-axis is the SHAP value for that feature, which represents how much knowing that feature’s value changes the output of the model for that example’s prediction.

  • Lower values of age have smaller SHAP values for class “>50K”.

  • Similarly, higher values of age also have a bit smaller SHAP values for class “>50K”, which makes sense.

  • There is some optimal value of age between scaled age of 1 which gives highest SHAP values for for class “>50K”.

  • Ignore the colour for now. The color corresponds to a second feature (education feature in this case) that may have an interaction effect with the feature we are plotting.

Summary plot#

shap.summary_plot(train_lgbm_shap_values[1], X_train_enc)
../_images/00e29a9b80cf41a3879e5a11e25e88c27c1ed099e41d58502f2d380cdb077b66.png

The plot shows the most important features for predicting the class. It also shows the direction of how it’s going to drive the prediction.

  • Presence of the marital status of Married-civ-spouse seems to have bigger SHAP values for class 1 and absence seems to have smaller SHAP values for class 1.

  • Higher levels of education seem to have bigger SHAP values for class 1 whereas smaller levels of education have smaller SHAP values.

shap.summary_plot(train_lgbm_shap_values[1], X_train_enc, plot_type="bar")
../_images/e51e97d8603108349d8db6924b309d82b7a54840749198e12bd4cada97fd5953.png

You can think of this as global feature importances.



Here, we explore SHAP’s TreeExplainer. It also provides explainer for different kinds of models.

  • Can also be used to explain text classification and image classification

  • Example: In the picture below, red pixels represent positive SHAP values that increase the probability of the class, while blue pixels represent negative SHAP values the reduce the probability of the class.

Source

Other tools#

  • lime is another package.

If you’re not already impressed, keep in mind:

  • So far we’ve only used sklearn models.

  • Most sklearn models have some built-in measure of feature importances.

  • On many tasks we need to move beyond sklearn, e.g. LightGBM, deep learning.

  • These tools work on other models as well, which makes them extremely useful.

Why do we want this information?#

Possible reasons:

  • Identify features that are not useful and maybe remove them.

  • Get guidance on what new data to collect.

    • New features related to useful features -> better results.

    • Don’t bother collecting useless features -> save resources.

  • Help explain why the model is making certain predictions.

    • Debugging, if the model is behaving strangely.

    • Regulatory requirements.

    • Fairness / bias. See this.

    • Keep in mind this can be used on deployment predictions!

Here are some guidelines and important points to remember when you work on a prediction problem where you also want to understand which features are influencing the predictions.

  • Examine multicoliniarity in your dataset using methods such as VIF.

  • If you observe high correlations in your dataset, either get rid of redundant features or be mindful of these correlations during interpretation.

  • Be mindful that feature relevance is not clearly defined. Adding/removing features can change feature importance/unimportance. Also, feature importances do not give us causal relationships. See this optional section from Lecture 4.

  • Most of the models we use in ML are regularized models. With L2 regularization, the feature importances are distributed evenly among correlated features. With L1 regularization, one of the correlated features gets a high importance and the other gets a lower importance.

  • Don’t be overconfident. Always take feature importance values with a grain of salt.