Lecture 8: Hyperparameter Optimization and Optimization Bias

Lecture 8: Hyperparameter Optimization and Optimization Bias#

UBC 2024-25

Imports, Announcements, and LO#

Imports#

import os
import sys

sys.path.append(os.path.join(os.path.abspath(".."), "code"))

import matplotlib.pyplot as plt
import mglearn
import numpy as np
import pandas as pd
from plotting_functions import *
from sklearn.dummy import DummyClassifier
from sklearn.impute import SimpleImputer
from sklearn.model_selection import cross_val_score, cross_validate, train_test_split
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from utils import *

%matplotlib inline
pd.set_option("display.max_colwidth", 200)
DATA_DIR = "../data/"
from sklearn import set_config

set_config(display="diagram")



Learning outcomes#

From this lecture, you will be able to

  • explain the need for hyperparameter optimization

  • carry out hyperparameter optimization using sklearn’s GridSearchCV and RandomizedSearchCV

  • explain different hyperparameters of GridSearchCV

  • explain the importance of selecting a good range for the values.

  • explain optimization bias

  • identify and reason when to trust and not trust reported accuracies





Hyperparameter optimization motivation (video)#

Motivation#

  • Remember that the fundamental goal of supervised machine learning is to generalize beyond what we see in the training examples.

  • We have been using data splitting and cross-validation to provide a framework to approximate generalization error.

  • With this framework, we can improve the model’s generalization performance by tuning model hyperparameters using cross-validation on the training set.

Hyperparameters: the problem#

  • In order to improve the generalization performance, finding the best values for the important hyperparameters of a model is necessary for almost all models and datasets.

  • Picking good hyperparameters is important because if we don’t do it, we might end up with an underfit or overfit model.

Some ways to pick hyperparameters:#

  • Manual or expert knowledge or heuristics based optimization

  • Data-driven or automated optimization

Manual hyperparameter optimization#

  • Advantage: we may have some intuition about what might work.

    • E.g. if I’m massively overfitting, try decreasing max_depth or C.

  • Disadvantages

    • it takes a lot of work

    • not reproducible

    • in very complicated cases, our intuition might be worse than a data-driven approach

Automated hyperparameter optimization#

  • Formulate the hyperparamter optimization as a one big search problem.

  • Often we have many hyperparameters of different types: Categorical, integer, and continuous.

  • Often, the search space is quite big and systematic search for optimal values is infeasible.

In homework assignments, we have been carrying out hyperparameter search by exhaustively trying different possible combinations of the hyperparameters of interest.

mglearn.plots.plot_grid_search_overview()
../../_images/f8e5644f0cee2be399ffd298a2b131fd4a73d1bb24ec9811d15bed4b85f2916f.png

Let’s look at an example of tuning max_depth of the DecisionTreeClassifier on the Spotify dataset.

spotify_df = pd.read_csv(DATA_DIR + "spotify.csv", index_col=0)
X_spotify = spotify_df.drop(columns=["target", "artist"])
y_spotify = spotify_df["target"]
X_spotify.head()
acousticness danceability duration_ms energy instrumentalness key liveness loudness mode speechiness tempo time_signature valence song_title
0 0.0102 0.833 204600 0.434 0.021900 2 0.1650 -8.795 1 0.4310 150.062 4.0 0.286 Mask Off
1 0.1990 0.743 326933 0.359 0.006110 1 0.1370 -10.401 1 0.0794 160.083 4.0 0.588 Redbone
2 0.0344 0.838 185707 0.412 0.000234 2 0.1590 -7.148 1 0.2890 75.044 4.0 0.173 Xanny Family
3 0.6040 0.494 199413 0.338 0.510000 5 0.0922 -15.236 1 0.0261 86.468 4.0 0.230 Master Of None
4 0.1800 0.678 392893 0.561 0.512000 5 0.4390 -11.648 0 0.0694 174.004 4.0 0.904 Parallel Lines
X_train, X_test, y_train, y_test = train_test_split(
    X_spotify, y_spotify, test_size=0.2, random_state=123
)
numeric_feats = ['acousticness', 'danceability', 'energy',
                 'instrumentalness', 'liveness', 'loudness',
                 'speechiness', 'tempo', 'valence']
categorical_feats = ['time_signature', 'key']
passthrough_feats = ['mode']
text_feat = "song_title"
from sklearn.compose import make_column_transformer
from sklearn.feature_extraction.text import CountVectorizer

preprocessor = make_column_transformer(
    (StandardScaler(), numeric_feats), 
    (OneHotEncoder(handle_unknown = "ignore"), categorical_feats), 
    ("passthrough", passthrough_feats), 
    (CountVectorizer(max_features=100, stop_words="english"), text_feat)
)

svc_pipe = make_pipeline(preprocessor, SVC)
best_score = 0

param_grid = {"max_depth": np.arange(1, 20, 2)}

results_dict = {"max_depth": [], "mean_cv_score": []}

for depth in param_grid[
    "max_depth"
]:  # for each combination of parameters, train an SVC
    dt_pipe = make_pipeline(preprocessor, DecisionTreeClassifier(max_depth=depth))
    scores = cross_val_score(dt_pipe, X_train, y_train)  # perform cross-validation
    mean_score = np.mean(scores)  # compute mean cross-validation accuracy
    if (
        mean_score > best_score
    ):  # if we got a better score, store the score and parameters
        best_score = mean_score
        best_params = {"max_depth": depth}
    results_dict["max_depth"].append(depth)
    results_dict["mean_cv_score"].append(mean_score)
best_params
{'max_depth': 5}
best_score
0.7315558717766282

Let’s try SVM RBF and tuning C and gamma on the same dataset.

pipe_svm = make_pipeline(preprocessor, SVC())  # We need scaling for SVM RBF
pipe_svm.fit(X_train, y_train)
Pipeline(steps=[('columntransformer',
                 ColumnTransformer(transformers=[('standardscaler',
                                                  StandardScaler(),
                                                  ['acousticness',
                                                   'danceability', 'energy',
                                                   'instrumentalness',
                                                   'liveness', 'loudness',
                                                   'speechiness', 'tempo',
                                                   'valence']),
                                                 ('onehotencoder',
                                                  OneHotEncoder(handle_unknown='ignore'),
                                                  ['time_signature', 'key']),
                                                 ('passthrough', 'passthrough',
                                                  ['mode']),
                                                 ('countvectorizer',
                                                  CountVectorizer(max_features=100,
                                                                  stop_words='english'),
                                                  'song_title')])),
                ('svc', SVC())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Let’s try cross-validation with default hyperparameters of SVC.

scores = cross_validate(pipe_svm, X_train, y_train, return_train_score=True)
pd.DataFrame(scores).mean()
fit_time       0.057437
score_time     0.013367
test_score     0.734011
train_score    0.828891
dtype: float64

Now let’s try exhaustive hyperparameter search using for loops.

This is what we have been doing for this:

for gamma in [0.01, 1, 10, 100]: # for some values of gamma
    for C in [0.01, 1, 10, 100]: # for some values of C
        for fold in folds:
            fit in training portion with the given C
            score on validation portion
        compute average score
        
pick hyperparameter values which yield with best average score
best_score = 0

param_grid = {
    "C": [0.001, 0.01, 0.1, 1, 10, 100],
    "gamma": [0.001, 0.01, 0.1, 1, 10, 100],
}

results_dict = {"C": [], "gamma": [], "mean_cv_score": []}

for gamma in param_grid["gamma"]:
    for C in param_grid["C"]:  # for each combination of parameters, train an SVC
        pipe_svm = make_pipeline(preprocessor, SVC(gamma=gamma, C=C))
        scores = cross_val_score(pipe_svm, X_train, y_train)  # perform cross-validation
        mean_score = np.mean(scores)  # compute mean cross-validation accuracy
        if (
            mean_score > best_score
        ):  # if we got a better score, store the score and parameters
            best_score = mean_score
            best_parameters = {"C": C, "gamma": gamma}
        results_dict["C"].append(C)
        results_dict["gamma"].append(gamma)
        results_dict["mean_cv_score"].append(mean_score)
best_parameters
{'C': 1, 'gamma': 0.1}
best_score
0.7352614272253524
df = pd.DataFrame(results_dict)
df.sort_values(by="mean_cv_score", ascending=False).head(10)
C gamma mean_cv_score
15 1.0 0.100 0.735261
16 10.0 0.100 0.722249
11 100.0 0.010 0.716657
10 10.0 0.010 0.716655
5 100.0 0.001 0.705511
14 0.1 0.100 0.701173
9 1.0 0.010 0.691877
17 100.0 0.100 0.677601
4 10.0 0.001 0.673277
8 0.1 0.010 0.652828
scores = np.array(df.mean_cv_score).reshape(6, 6)

my_heatmap(
    scores,
    xlabel="C",
    xticklabels=param_grid["C"],
    ylabel="gamma",
    yticklabels=param_grid["gamma"],
    cmap="viridis",
    fmt="%0.2f"
);
# plot the mean cross-validation scores
../../_images/09725240a20bfad4141ac313d46e256b84815f966d3883f304711665f27101b3.png
  • We have 6 possible values for C and 6 possible values for gamma.

  • In 5-fold cross-validation, for each combination of parameter values, five accuracies are computed.

  • So to evaluate the accuracy of the SVM using 6 values of C and 6 values of gamma using five-fold cross-validation, we need to train 36 * 5 = 180 models!

np.prod(list(map(len, param_grid.values())))
36

Once we have optimized hyperparameters, we retrain a model on the full training set with these optimized hyperparameters.

pipe_svm = make_pipeline(preprocessor, SVC(**best_parameters))
pipe_svm.fit(
    X_train, y_train
)  # Retrain a model with optimized hyperparameters on the combined training and validation set
Pipeline(steps=[('columntransformer',
                 ColumnTransformer(transformers=[('standardscaler',
                                                  StandardScaler(),
                                                  ['acousticness',
                                                   'danceability', 'energy',
                                                   'instrumentalness',
                                                   'liveness', 'loudness',
                                                   'speechiness', 'tempo',
                                                   'valence']),
                                                 ('onehotencoder',
                                                  OneHotEncoder(handle_unknown='ignore'),
                                                  ['time_signature', 'key']),
                                                 ('passthrough', 'passthrough',
                                                  ['mode']),
                                                 ('countvectorizer',
                                                  CountVectorizer(max_features=100,
                                                                  stop_words='english'),
                                                  'song_title')])),
                ('svc', SVC(C=1, gamma=0.1))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Note

In Python, the double asterisk (**) followed by a variable name is used to pass a variable number of keyword arguments to a function. This allows to pass a dictionary of named arguments to a function, where keys of the dictionary become the argument names and values vecome the corresponding argument values.

And finally evaluate the performance of this model on the test set.

pipe_svm.score(X_test, y_test)  # Final evaluation on the test data
0.75

This process is so common that there are some standard methods in scikit-learn where we can carry out all of this in a more compact way.

mglearn.plots.plot_grid_search_overview()
../../_images/a29b0d769c718ebe37d61dd5da8d8519cdc3fc080e5e6d7450fd837225578048.png

In this lecture we are going to talk about two such most commonly used automated optimizations methods from scikit-learn.

The “CV” stands for cross-validation; these methods have built-in cross-validation.





Exhaustive grid search: sklearn.model_selection.GridSearchCV#

  • For GridSearchCV we need

    • an instantiated model or a pipeline

    • a parameter grid: A user specifies a set of values for each hyperparameter.

    • other optional arguments

The method considers product of the sets and evaluates each combination one by one.

from sklearn.model_selection import GridSearchCV

pipe_svm = make_pipeline(preprocessor, SVC())

param_grid = {
    "columntransformer__countvectorizer__max_features": [100, 200, 400, 800, 1000, 2000],
    "svc__gamma": [0.001, 0.01, 0.1, 1.0, 10, 100],
    "svc__C": [0.001, 0.01, 0.1, 1.0, 10, 100],
}

# Create a grid search object 
gs = GridSearchCV(pipe_svm, 
                  param_grid = param_grid, 
                  n_jobs=-1, 
                  return_train_score=True
                 )

The GridSearchCV object above behaves like a classifier. We can call fit, predict or score on it.

# Carry out the search 
gs.fit(X_train, y_train)
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.
/Users/gtoti/opt/anaconda3/envs/cpsc330-24/lib/python3.12/site-packages/numpy/ma/core.py:2820: RuntimeWarning: invalid value encountered in cast
  _data = np.array(data, dtype=dtype, copy=copy,
GridSearchCV(estimator=Pipeline(steps=[('columntransformer',
                                        ColumnTransformer(transformers=[('standardscaler',
                                                                         StandardScaler(),
                                                                         ['acousticness',
                                                                          'danceability',
                                                                          'energy',
                                                                          'instrumentalness',
                                                                          'liveness',
                                                                          'loudness',
                                                                          'speechiness',
                                                                          'tempo',
                                                                          'valence']),
                                                                        ('onehotencoder',
                                                                         OneHotEncoder(handle_unknown='ignore'),
                                                                         ['time_signature',
                                                                          'key']),
                                                                        ('passthrough',
                                                                         'passthrough',
                                                                         ['mode']),
                                                                        ('countvectorizer',
                                                                         CountVectorizer(max_features=100,
                                                                                         stop_words='english'),
                                                                         'song_title')])),
                                       ('svc', SVC())]),
             n_jobs=-1,
             param_grid={'columntransformer__countvectorizer__max_features': [100,
                                                                              200,
                                                                              400,
                                                                              800,
                                                                              1000,
                                                                              2000],
                         'svc__C': [0.001, 0.01, 0.1, 1.0, 10, 100],
                         'svc__gamma': [0.001, 0.01, 0.1, 1.0, 10, 100]},
             return_train_score=True)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Fitting the GridSearchCV object

  • Searches for the best hyperparameter values

  • You can access the best score and the best hyperparameters using best_score_ and best_params_ attributes, respectively.

# Get the best score
gs.best_score_
0.7395977155164125
# Get the best hyperparameter values
gs.best_params_
{'columntransformer__countvectorizer__max_features': 1000,
 'svc__C': 1.0,
 'svc__gamma': 0.1}
  • It is often helpful to visualize results of all cross-validation experiments.

  • You can access this information using cv_results_ attribute of a fitted GridSearchCV object.

results = pd.DataFrame(gs.cv_results_)
results.T
0 1 2 3 4 5 6 7 8 9 ... 206 207 208 209 210 211 212 213 214 215
mean_fit_time 0.135963 0.130181 0.111374 0.164756 0.102776 0.104816 0.096682 0.120408 0.111419 0.103207 ... 0.161149 0.136381 0.139619 0.212911 0.163218 0.193763 0.151789 0.14148 0.143864 0.12419
std_fit_time 0.010521 0.01001 0.023499 0.031701 0.013086 0.013947 0.005763 0.030162 0.005294 0.007096 ... 0.016141 0.012502 0.001095 0.036474 0.030866 0.026077 0.01363 0.018112 0.007172 0.01531
mean_score_time 0.025061 0.026798 0.035939 0.032339 0.032225 0.027659 0.02569 0.032082 0.027827 0.022819 ... 0.027256 0.027895 0.028808 0.030776 0.028072 0.026641 0.027061 0.034304 0.032114 0.026555
std_score_time 0.004041 0.002574 0.008516 0.013619 0.010124 0.001396 0.007176 0.014589 0.005004 0.004409 ... 0.001277 0.000753 0.00371 0.005004 0.009238 0.004679 0.003634 0.005609 0.003833 0.005162
param_columntransformer__countvectorizer__max_features 100 100 100 100 100 100 100 100 100 100 ... 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
param_svc__C 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.01 0.01 0.01 ... 10.0 10.0 10.0 10.0 100.0 100.0 100.0 100.0 100.0 100.0
param_svc__gamma 0.001 0.01 0.1 1.0 10.0 100.0 0.001 0.01 0.1 1.0 ... 0.1 1.0 10.0 100.0 0.001 0.01 0.1 1.0 10.0 100.0
params {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 0.001, 'svc__gamma': 0.001} {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 0.001, 'svc__gamma': 0.01} {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 0.001, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 0.001, 'svc__gamma': 1.0} {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 0.001, 'svc__gamma': 10} {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 0.001, 'svc__gamma': 100} {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 0.01, 'svc__gamma': 0.001} {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 0.01, 'svc__gamma': 0.01} {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 0.01, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 0.01, 'svc__gamma': 1.0} ... {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 10, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 10, 'svc__gamma': 1.0} {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 10, 'svc__gamma': 10} {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 10, 'svc__gamma': 100} {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 100, 'svc__gamma': 0.001} {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 100, 'svc__gamma': 0.01} {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 100, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 100, 'svc__gamma': 1.0} {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 100, 'svc__gamma': 10} {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 100, 'svc__gamma': 100}
split0_test_score 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 ... 0.733746 0.616099 0.50774 0.504644 0.718266 0.718266 0.724458 0.616099 0.50774 0.504644
split1_test_score 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 ... 0.77709 0.625387 0.510836 0.510836 0.724458 0.739938 0.764706 0.625387 0.510836 0.510836
split2_test_score 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 ... 0.690402 0.606811 0.50774 0.50774 0.693498 0.705882 0.687307 0.606811 0.50774 0.50774
split3_test_score 0.506211 0.506211 0.506211 0.506211 0.506211 0.506211 0.506211 0.506211 0.506211 0.506211 ... 0.708075 0.618012 0.509317 0.509317 0.68323 0.704969 0.708075 0.618012 0.509317 0.509317
split4_test_score 0.509317 0.509317 0.509317 0.509317 0.509317 0.509317 0.509317 0.509317 0.509317 0.509317 ... 0.723602 0.645963 0.509317 0.509317 0.720497 0.717391 0.720497 0.645963 0.509317 0.509317
mean_test_score 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 ... 0.726583 0.622454 0.50899 0.508371 0.70799 0.717289 0.721008 0.622454 0.50899 0.508371
std_test_score 0.000982 0.000982 0.000982 0.000982 0.000982 0.000982 0.000982 0.000982 0.000982 0.000982 ... 0.029198 0.013161 0.001162 0.002105 0.01647 0.012616 0.025396 0.013161 0.001162 0.002105
rank_test_score 121 121 121 121 121 121 121 121 121 121 ... 9 81 91 97 28 22 18 81 91 97
split0_train_score 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 ... 1.0 1.0 1.0 1.0 0.828682 0.989147 1.0 1.0 1.0 1.0
split1_train_score 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 ... 0.999225 1.0 1.0 1.0 0.834109 0.989922 1.0 1.0 1.0 1.0
split2_train_score 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 ... 0.99845 0.999225 0.999225 0.999225 0.827907 0.987597 0.999225 0.999225 0.999225 0.999225
split3_train_score 0.508133 0.508133 0.508133 0.508133 0.508133 0.508133 0.508133 0.508133 0.508133 0.508133 ... 0.998451 0.999225 0.999225 0.999225 0.841208 0.989156 0.999225 0.999225 0.999225 0.999225
split4_train_score 0.507359 0.507359 0.507359 0.507359 0.507359 0.507359 0.507359 0.507359 0.507359 0.507359 ... 0.999225 0.999225 0.999225 0.999225 0.82804 0.988381 0.999225 0.999225 0.999225 0.999225
mean_train_score 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 ... 0.99907 0.999535 0.999535 0.999535 0.831989 0.988841 0.999535 0.999535 0.999535 0.999535
std_train_score 0.000245 0.000245 0.000245 0.000245 0.000245 0.000245 0.000245 0.000245 0.000245 0.000245 ... 0.00058 0.00038 0.00038 0.00038 0.005151 0.00079 0.00038 0.00038 0.00038 0.00038

23 rows × 216 columns

results = (
    pd.DataFrame(gs.cv_results_).set_index("rank_test_score").sort_index()
)
display(results.T)
rank_test_score 1 2 3 4 5 5 7 8 9 10 ... 121 121 121 121 121 121 121 121 121 121
mean_fit_time 0.107356 0.102918 0.092924 0.113411 0.088497 0.093486 0.14525 0.148232 0.161149 0.147807 ... 0.107343 0.113088 0.107351 0.114796 0.097513 0.104332 0.107557 0.113147 0.105024 0.135963
std_fit_time 0.008082 0.011928 0.008756 0.01337 0.005003 0.003968 0.008497 0.014154 0.016141 0.009626 ... 0.003131 0.006451 0.009589 0.014261 0.015107 0.007177 0.015229 0.012254 0.003235 0.010521
mean_score_time 0.02283 0.024148 0.024214 0.029522 0.020956 0.027706 0.026801 0.028449 0.027256 0.020713 ... 0.033008 0.026475 0.030481 0.03487 0.028569 0.036475 0.026982 0.031097 0.026552 0.025061
std_score_time 0.002962 0.001189 0.000717 0.005437 0.005963 0.00253 0.010444 0.008545 0.001277 0.003375 ... 0.003114 0.002705 0.003508 0.004551 0.007119 0.010065 0.002123 0.009145 0.004262 0.004041
param_columntransformer__countvectorizer__max_features 1000 2000 400 800 200 100 800 1000 2000 400 ... 1000 1000 1000 400 400 400 400 400 1000 100
param_svc__C 1.0 1.0 1.0 1.0 1.0 1.0 10.0 10.0 10.0 10.0 ... 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
param_svc__gamma 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ... 0.1 0.01 0.001 0.001 0.01 0.1 1.0 10.0 100.0 0.001
params {'columntransformer__countvectorizer__max_features': 1000, 'svc__C': 1.0, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 1.0, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 400, 'svc__C': 1.0, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 800, 'svc__C': 1.0, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 200, 'svc__C': 1.0, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 1.0, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 800, 'svc__C': 10, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 1000, 'svc__C': 10, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 2000, 'svc__C': 10, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 400, 'svc__C': 10, 'svc__gamma': 0.1} ... {'columntransformer__countvectorizer__max_features': 1000, 'svc__C': 0.001, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 1000, 'svc__C': 0.001, 'svc__gamma': 0.01} {'columntransformer__countvectorizer__max_features': 1000, 'svc__C': 0.001, 'svc__gamma': 0.001} {'columntransformer__countvectorizer__max_features': 400, 'svc__C': 0.001, 'svc__gamma': 0.001} {'columntransformer__countvectorizer__max_features': 400, 'svc__C': 0.001, 'svc__gamma': 0.01} {'columntransformer__countvectorizer__max_features': 400, 'svc__C': 0.001, 'svc__gamma': 0.1} {'columntransformer__countvectorizer__max_features': 400, 'svc__C': 0.001, 'svc__gamma': 1.0} {'columntransformer__countvectorizer__max_features': 400, 'svc__C': 0.001, 'svc__gamma': 10} {'columntransformer__countvectorizer__max_features': 1000, 'svc__C': 0.001, 'svc__gamma': 100} {'columntransformer__countvectorizer__max_features': 100, 'svc__C': 0.001, 'svc__gamma': 0.001}
split0_test_score 0.764706 0.767802 0.764706 0.76161 0.758514 0.76161 0.727554 0.718266 0.733746 0.739938 ... 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774
split1_test_score 0.767802 0.770898 0.764706 0.76161 0.758514 0.755418 0.77709 0.783282 0.77709 0.783282 ... 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774
split2_test_score 0.71517 0.708978 0.708978 0.712074 0.712074 0.712074 0.690402 0.708978 0.690402 0.693498 ... 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774 0.50774
split3_test_score 0.717391 0.717391 0.714286 0.720497 0.717391 0.714286 0.729814 0.717391 0.708075 0.714286 ... 0.506211 0.506211 0.506211 0.506211 0.506211 0.506211 0.506211 0.506211 0.506211 0.506211
split4_test_score 0.732919 0.729814 0.729814 0.723602 0.729814 0.732919 0.714286 0.708075 0.723602 0.701863 ... 0.509317 0.509317 0.509317 0.509317 0.509317 0.509317 0.509317 0.509317 0.509317 0.509317
mean_test_score 0.739598 0.738977 0.736498 0.735879 0.735261 0.735261 0.727829 0.727198 0.726583 0.726573 ... 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775
std_test_score 0.022629 0.025689 0.024028 0.021345 0.019839 0.020414 0.028337 0.028351 0.029198 0.032404 ... 0.000982 0.000982 0.000982 0.000982 0.000982 0.000982 0.000982 0.000982 0.000982 0.000982
split0_train_score 0.889147 0.903101 0.881395 0.886047 0.872093 0.856589 0.993023 0.996899 1.0 0.986047 ... 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752
split1_train_score 0.877519 0.895349 0.858915 0.873643 0.847287 0.83876 0.993023 0.994574 0.999225 0.987597 ... 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752
split2_train_score 0.888372 0.897674 0.87907 0.887597 0.85969 0.849612 0.994574 0.994574 0.99845 0.989922 ... 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752 0.507752
split3_train_score 0.884586 0.902401 0.869094 0.879938 0.859799 0.852053 0.989156 0.992254 0.998451 0.982184 ... 0.508133 0.508133 0.508133 0.508133 0.508133 0.508133 0.508133 0.508133 0.508133 0.508133
split4_train_score 0.876065 0.891557 0.861348 0.874516 0.850503 0.841983 0.992254 0.993029 0.999225 0.985283 ... 0.507359 0.507359 0.507359 0.507359 0.507359 0.507359 0.507359 0.507359 0.507359 0.507359
mean_train_score 0.883138 0.898016 0.869964 0.880348 0.857874 0.847799 0.992406 0.994266 0.99907 0.986207 ... 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775 0.50775
std_train_score 0.005426 0.004337 0.009063 0.00573 0.008667 0.006545 0.001792 0.001594 0.00058 0.002561 ... 0.000245 0.000245 0.000245 0.000245 0.000245 0.000245 0.000245 0.000245 0.000245 0.000245

22 rows × 216 columns

Let’s only look at the most relevant rows.

pd.DataFrame(gs.cv_results_)[
    [
        "mean_test_score",
        "param_columntransformer__countvectorizer__max_features", 
        "param_svc__gamma",
        "param_svc__C",
        "mean_fit_time",
        "rank_test_score",
    ]
].set_index("rank_test_score").sort_index().T
rank_test_score 1 2 3 4 5 5 7 8 9 10 ... 121 121 121 121 121 121 121 121 121 121
mean_test_score 0.739598 0.738977 0.736498 0.735879 0.735261 0.735261 0.727829 0.727198 0.726583 0.726573 ... 0.507750 0.507750 0.507750 0.507750 0.507750 0.507750 0.507750 0.507750 0.507750 0.507750
param_columntransformer__countvectorizer__max_features 1000.000000 2000.000000 400.000000 800.000000 200.000000 100.000000 800.000000 1000.000000 2000.000000 400.000000 ... 1000.000000 1000.000000 1000.000000 400.000000 400.000000 400.000000 400.000000 400.000000 1000.000000 100.000000
param_svc__gamma 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 ... 0.100000 0.010000 0.001000 0.001000 0.010000 0.100000 1.000000 10.000000 100.000000 0.001000
param_svc__C 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 10.000000 10.000000 10.000000 10.000000 ... 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000 0.001000
mean_fit_time 0.107356 0.102918 0.092924 0.113411 0.088497 0.093486 0.145250 0.148232 0.161149 0.147807 ... 0.107343 0.113088 0.107351 0.114796 0.097513 0.104332 0.107557 0.113147 0.105024 0.135963

5 rows × 216 columns

  • Other than searching for best hyperparameter values, GridSearchCV also fits a new model on the whole training set with the parameters that yielded the best results.

  • So we can conveniently call score on the test set with a fitted GridSearchCV object.

# Get the test scores 

gs.score(X_test, y_test)
0.7574257425742574

Why are best_score_ and the score above different?

n_jobs=-1#

  • Note the n_jobs=-1 above.

  • Hyperparameter optimization can be done in parallel for each of the configurations.

  • This is very useful when scaling up to large numbers of machines in the cloud.

  • When you set n_jobs=-1, it means that you want to use all available CPU cores for the task.

The __ syntax#

  • Above: we have a nesting of transformers.

  • We can access the parameters of the “inner” objects by using __ to go “deeper”:

  • svc__gamma: the gamma of the svc of the pipeline

  • svc__C: the C of the svc of the pipeline

  • columntransformer__countvectorizer__max_features: the max_features hyperparameter of CountVectorizer in the column transformer preprocessor.

pipe_svm
Pipeline(steps=[('columntransformer',
                 ColumnTransformer(transformers=[('standardscaler',
                                                  StandardScaler(),
                                                  ['acousticness',
                                                   'danceability', 'energy',
                                                   'instrumentalness',
                                                   'liveness', 'loudness',
                                                   'speechiness', 'tempo',
                                                   'valence']),
                                                 ('onehotencoder',
                                                  OneHotEncoder(handle_unknown='ignore'),
                                                  ['time_signature', 'key']),
                                                 ('passthrough', 'passthrough',
                                                  ['mode']),
                                                 ('countvectorizer',
                                                  CountVectorizer(max_features=100,
                                                                  stop_words='english'),
                                                  'song_title')])),
                ('svc', SVC())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Range of C#

  • Note the exponential range for C. This is quite common. Using this exponential range allows you to explore a wide range of values efficiently.

  • There is no point trying \(C=\{1,2,3\ldots,100\}\) because \(C=1,2,3\) are too similar to each other.

  • Often we’re trying to find an order of magnitude, e.g. \(C=\{0.01,0.1,1,10,100\}\).

  • We can also write that as \(C=\{10^{-2},10^{-1},10^0,10^1,10^2\}\).

  • Or, in other words, \(C\) values to try are \(10^n\) for \(n=-2,-1,0,1,2\) which is basically what we have above.



Visualizing the parameter grid as a heatmap#

def display_heatmap(param_grid, pipe, X_train, y_train):
    grid_search = GridSearchCV(
        pipe, param_grid, cv=5, n_jobs=-1, return_train_score=True
    )
    grid_search.fit(X_train, y_train)
    results = pd.DataFrame(grid_search.cv_results_)
    scores = np.array(results.mean_test_score).reshape(6, 6)

    # plot the mean cross-validation scores
    my_heatmap(
        scores,
        xlabel="gamma",
        xticklabels=param_grid["svc__gamma"],
        ylabel="C",
        yticklabels=param_grid["svc__C"],
        cmap="viridis",
    );
  • Note that the range we pick for the parameters play an important role in hyperparameter optimization.

  • For example, consider the following grid and the corresponding results.

param_grid1 = {
    "svc__gamma": 10.0**np.arange(-3, 3, 1), 
    "svc__C": 10.0**np.arange(-3, 3, 1)
}
display_heatmap(param_grid1, pipe_svm, X_train, y_train)
../../_images/0734084070b5457d5229557330a6046f84af1b0283b05464b26a352f46dd7927.png
  • Each point in the heat map corresponds to one run of cross-validation, with a particular setting

  • Colour encodes cross-validation accuracy.

    • Lighter colour means high accuracy

    • Darker colour means low accuracy

  • SVC is quite sensitive to hyperparameter settings.

  • Adjusting hyperparameters can change the accuracy from 0.51 to 0.74!

Bad range for hyperparameters#

np.logspace(1, 2, 6)
array([ 10.        ,  15.84893192,  25.11886432,  39.81071706,
        63.09573445, 100.        ])
np.linspace(1, 2, 6)
array([1. , 1.2, 1.4, 1.6, 1.8, 2. ])
param_grid2 = {"svc__gamma": np.round(np.logspace(1, 2, 6), 1), "svc__C": np.linspace(1, 2, 6)}
display_heatmap(param_grid2, pipe_svm, X_train, y_train)
../../_images/97f31a737f66f771539a5f193857ec97ba530936b4ff8cf3a959a3eeb5928c1a.png

Different range for hyperparameters yields better results!#

np.logspace(-3, 2, 6)
array([1.e-03, 1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02])
np.linspace(1, 2, 6)
array([1. , 1.2, 1.4, 1.6, 1.8, 2. ])
param_grid3 = {"svc__gamma": np.logspace(-3, 2, 6), "svc__C": np.linspace(1, 2, 6)}

display_heatmap(param_grid3, pipe_svm, X_train, y_train)
../../_images/9d4eeb6400a4b4c6f05f634db0be598ee7ceb53f9654ea20198622111deb9c7c.png

It seems like we are getting even better cross-validation results with C = 2.0 and gamma = 0.1

How about exploring different values of C close to 2.0?

param_grid4 = {"svc__gamma": np.logspace(-3, 2, 6), "svc__C": np.linspace(2, 3, 6)}

display_heatmap(param_grid4, pipe_svm, X_train, y_train)
../../_images/d084d332cf19cb5d812791dd5091fb23ed3a68162fe00d86f970d10fe7e6249b.png

That’s good! We are finding some more options for C where the accuracy is 0.75. The tricky part is we do not know in advance what range of hyperparameters might work the best for the given problem, model, and the dataset.

Note

GridSearchCV allows the param_grid to be a list of dictionaries. Sometimes some hyperparameters are applicable only for certain models. For example, in the context of SVC, C and gamma are applicable when the kernel is rbf whereas only C is applicable for kernel="linear".

(Optional) Fancier methods#

  • Both GridSearchCV and RandomizedSearchCV do each trial independently.

  • What if you could learn from your experience, e.g. learn that max_depth=3 is bad?

    • That could save time because you wouldn’t try combinations involving max_depth=3 in the future.

  • We can do this with scikit-optimize, which is a completely different package from scikit-learn

  • It uses a technique called “model-based optimization” and we’ll specifically use “Bayesian optimization”.

    • In short, it uses machine learning to predict what hyperparameters will be good.

    • Machine learning on machine learning!

  • This is an active research area and there are sophisticated packages for this.

Here are some examples

❓❓ Questions for you#

(iClicker) Exercise 8.1#

iClicker cloud join link: https://join.iclicker.com/VYFJ

Select all of the following statements which are TRUE.

  • (A) If you get best results at the edges of your parameter grid, it might be a good idea to adjust the range of values in your parameter grid.

  • (B) Grid search is guaranteed to find the best hyperparameter values.

  • (C) It is possible to get different hyperparameters in different runs of RandomizedSearchCV.

Questions for class discussion (hyperparameter optimization)#

  • Suppose you have 10 hyperparameters, each with 4 possible values. If you run GridSearchCV with this parameter grid, how many cross-validation experiments will be carried out?

  • Suppose you have 10 hyperparameters and each takes 4 values. If you run RandomizedSearchCV with this parameter grid with n_iter=20, how many cross-validation experiments will be carried out?





Optimization bias/Overfitting of the validation set (video)#

Overfitting of the validation error#

  • Why do we need to evaluate the model on the test set in the end?

  • Why not just use cross-validation on the whole dataset?

  • While carrying out hyperparameter optimization, we usually try over many possibilities.

  • If our dataset is small and if your validation set is hit too many times, we suffer from optimization bias or overfitting the validation set.

Optimization bias of parameter learning#

  • Overfitting of the training error

  • An example:

    • During training, we could search over tons of different decision trees.

    • So we can get “lucky” and find a tree with low training error by chance.

Optimization bias of hyper-parameter learning#

  • Overfitting of the validation error

  • An example:

    • Here, we might optimize the validation error over 1000 values of max_depth.

    • One of the 1000 trees might have low validation error by chance.

(Optional) Example 1: Optimization bias#

Consider a multiple-choice (a,b,c,d) “test” with 10 questions:

  • If you choose answers randomly, expected grade is 25% (no bias).

  • If you fill out two tests randomly and pick the best, expected grade is 33%.

    • Optimization bias of ~8%.

  • If you take the best among 10 random tests, expected grade is ~47%.

  • If you take the best among 100, expected grade is ~62%.

  • If you take the best among 1000, expected grade is ~73%.

  • If you take the best among 10000, expected grade is ~82%.

    • You have so many “chances” that you expect to do well.

But on new questions the “random choice” accuracy is still 25%.

# (Optional) Code attribution: Rodolfo Lourenzutti
number_tests = [1, 2, 10, 100, 1000, 10000]
for ntests in number_tests:
    y = np.zeros(10000)
    for i in range(10000):
        y[i] = np.max(np.random.binomial(10.0, 0.25, ntests))
    print(
        "The expected grade among the best of %d tests is : %0.2f"
        % (ntests, np.mean(y) / 10.0)
    )
The expected grade among the best of 1 tests is : 0.25
The expected grade among the best of 2 tests is : 0.33
The expected grade among the best of 10 tests is : 0.47
The expected grade among the best of 100 tests is : 0.62
The expected grade among the best of 1000 tests is : 0.73
The expected grade among the best of 10000 tests is : 0.83

(Optional) Example 2: Optimization bias#

  • If we instead used a 100-question test then:

    • Expected grade from best over 1 randomly-filled test is 25%.

    • Expected grade from best over 2 randomly-filled test is ~27%.

    • Expected grade from best over 10 randomly-filled test is ~32%.

    • Expected grade from best over 100 randomly-filled test is ~36%.

    • Expected grade from best over 1000 randomly-filled test is ~40%.

    • Expected grade from best over 10000 randomly-filled test is ~43%.

  • The optimization bias grows with the number of things we try.

    • “Complexity” of the set of models we search over.

  • But, optimization bias shrinks quickly with the number of examples.

    • But it’s still non-zero and growing if you over-use your validation set!

# (Optional) Code attribution: Rodolfo Lourenzutti
number_tests = [1, 2, 10, 100, 1000, 10000]
for ntests in number_tests:
    y = np.zeros(10000)
    for i in range(10000):
        y[i] = np.max(np.random.binomial(100.0, 0.25, ntests))
    print(
        "The expected grade among the best of %d tests is : %0.2f"
        % (ntests, np.mean(y) / 100.0)
    )
The expected grade among the best of 1 tests is : 0.25
The expected grade among the best of 2 tests is : 0.27
The expected grade among the best of 10 tests is : 0.32
The expected grade among the best of 100 tests is : 0.36
The expected grade among the best of 1000 tests is : 0.40
The expected grade among the best of 10000 tests is : 0.43

Optimization bias on the Spotify dataset#

X_train_tiny, X_test_big, y_train_tiny, y_test_big = train_test_split(
    X_spotify, y_spotify, test_size=0.99, random_state=42
)
X_train_tiny.shape
(20, 14)
X_train_tiny.head()
acousticness danceability duration_ms energy instrumentalness key liveness loudness mode speechiness tempo time_signature valence song_title
130 0.055100 0.547 251093 0.643 0.000000 1 0.2670 -8.904 1 0.2270 143.064 4.0 0.1870 My Sub (Pt. 2: The Jackin') - Album Version (Edited)
1687 0.000353 0.420 210240 0.929 0.000747 7 0.1220 -3.899 0 0.1210 127.204 4.0 0.3180 Chop Suey!
871 0.314000 0.430 193427 0.734 0.000286 9 0.0808 -10.043 0 0.1020 133.992 4.0 0.0537 Able to See Me
1123 0.082100 0.725 246653 0.711 0.000000 10 0.0931 -4.544 1 0.0335 93.003 4.0 0.4760 Mi Tesoro (feat. Nicky Jam)
1396 0.286000 0.616 236960 0.387 0.000000 9 0.2770 -6.079 0 0.0335 81.856 4.0 0.4700 All in Vain
pipe = make_pipeline(preprocessor, SVC())
from sklearn.model_selection import RandomizedSearchCV

param_grid = {
    "svc__gamma": 10.0 ** np.arange(-20, 10),
    "svc__C": 10.0 ** np.arange(-20, 10),
}
print("Grid size: %d" % (np.prod(list(map(len, param_grid.values())))))
param_grid
Grid size: 900
{'svc__gamma': array([1.e-20, 1.e-19, 1.e-18, 1.e-17, 1.e-16, 1.e-15, 1.e-14, 1.e-13,
        1.e-12, 1.e-11, 1.e-10, 1.e-09, 1.e-08, 1.e-07, 1.e-06, 1.e-05,
        1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03,
        1.e+04, 1.e+05, 1.e+06, 1.e+07, 1.e+08, 1.e+09]),
 'svc__C': array([1.e-20, 1.e-19, 1.e-18, 1.e-17, 1.e-16, 1.e-15, 1.e-14, 1.e-13,
        1.e-12, 1.e-11, 1.e-10, 1.e-09, 1.e-08, 1.e-07, 1.e-06, 1.e-05,
        1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03,
        1.e+04, 1.e+05, 1.e+06, 1.e+07, 1.e+08, 1.e+09])}
random_search = RandomizedSearchCV(
    pipe, param_distributions=param_grid, n_jobs=-1, n_iter=900, cv=5, random_state=42
)
random_search.fit(X_train_tiny, y_train_tiny);
pd.DataFrame(random_search.cv_results_)[
    [
        "mean_test_score",
        "param_svc__gamma",
        "param_svc__C",
        "mean_fit_time",
        "rank_test_score",
    ]
].set_index("rank_test_score").sort_index().T
rank_test_score 1 1 1 1 1 1 1 1 1 1 ... 888 888 888 888 888 888 888 888 888 900
mean_test_score 6.500000e-01 0.650000 0.650000 0.650000 0.650000 0.650000 0.65000 0.650000 0.65000 0.650000 ... 0.55000 5.500000e-01 5.500000e-01 5.500000e-01 0.550000 0.550000 0.550000 5.500000e-01 0.550000 5.000000e-01
param_svc__gamma 1.000000e-20 0.010000 0.100000 1.000000 10.000000 100.000000 1000.00000 10000.000000 100000.00000 1000000.000000 ... 0.10000 1.000000e-01 1.000000e-09 1.000000e-10 0.100000 0.100000 0.100000 1.000000e-01 0.100000 1.000000e-09
param_svc__C 1.000000e-20 0.010000 0.010000 0.010000 0.010000 0.010000 0.01000 0.010000 0.01000 0.010000 ... 100000.00000 1.000000e+07 1.000000e+09 1.000000e+09 1.000000 1000.000000 10.000000 1.000000e+09 1000000.000000 1.000000e+08
mean_fit_time 3.912983e-02 0.010901 0.009767 0.010307 0.008172 0.010488 0.00883 0.016789 0.01465 0.008099 ... 0.01076 1.365366e-02 1.449785e-02 1.330895e-02 0.010857 0.007548 0.011984 1.168165e-02 0.015976 1.263337e-02

4 rows × 900 columns

Given the results: one might claim that we found a model that performs with 0.8 accuracy on our dataset.

  • Do we really believe that 0.65 is a good estimate of our test data?

  • Do we really believe that gamma=1.e-20 and C=1.e-20 are the best hyperparameters?

  • Let’s find out the test score with this best model.

random_search.score(X_test, y_test)
0.5024752475247525
  • The results above are overly optimistic.

    • because our training data is very small and so our validation splits in cross validation would be small.

    • because of the small dataset and the fact that we hit the small validation set 900 times and it’s possible that we got lucky on the validation set!

  • As we suspected, the best cross-validation score is not a good estimate of our test data; it is overly optimistic.

  • We can trust this test score because the test set is of good size.

X_test_big.shape
(1997, 14)

Overfitting of the validation data#

The following plot demonstrates what happens during overfitting of the validation data.

Source

  • Thus, not only can we not trust the cv scores, we also cannot trust cv’s ability to choose of the best hyperparameters.

Why do we need a test set?#

  • This is why we need a test set.

  • The frustrating part is that if our dataset is small then our test set is also small 😔.

  • But we don’t have a lot of better alternatives, unfortunately, if we have a small dataset.

When test score is much lower than CV score#

  • What to do if your test score is much lower than your cross-validation score:

    • Try simpler models and use the test set a couple of times; it’s not the end of the world.

    • Communicate this clearly when you report the results.

Large datasets solve many of these problems#

  • With infinite amounts of training data, overfitting would not be a problem and you could have your test score = your train score.

    • Overfitting happens because you only see a bit of data and you learn patterns that are overly specific to your sample.

    • If you saw “all” the data, then the notion of “overly specific” would not apply.

  • So, more data will make your test score better and robust.

❓❓ Questions for you#

Attribution: From Mark Schmidt’s notes

Exercise 8.2#

Would you trust the model?

  • You have a dataset and you give me 1/10th of it. The dataset given to me is rather small and so I split it into 96% train and 4% validation split. I carry out hyperparameter optimization using a single 4% validation split and report validation accuracy of 0.97. Would it classify the rest of the data with similar accuracy?

  1. Probably

  2. Probably not

Final comments and summary#

Automated hyperparameter optimization#

  • Advantages

    • reduce human effort

    • less prone to error and improve reproducibility

    • data-driven approaches may be effective

  • Disadvantages

    • may be hard to incorporate intuition

    • be careful about overfitting on the validation set

Often, especially on typical datasets, we get back scikit-learn’s default hyperparameter values. This means that the defaults are well chosen by scikit-learn developers!

  • The problem of finding the best values for the important hyperparameters is tricky because

    • You may have a lot of them (e.g. deep learning).

    • You may have multiple hyperparameters which may interact with each other in unexpected ways.

  • The best settings depend on the specific data/problem.

Optional readings and resources#