Discrete Math for Data Science

DSCI 220, 2025 W1

October 20, 2025

Announcements

Sets, Power Sets, & Cross Products

Goals

  • Explore the Empty Set.
  • Distinguish element (\(\in\)) vs subset (\(\subseteq\)).
  • Define the power set \(\mathcal{P}(S)\) and its cardinality.
  • Define Cartesian product \(A\times B\).

The Empty Set (\(\varnothing\))

Definition: \(\varnothing\) (a.k.a. \(\{\}\)) is the unique set with no elements.

  • Cardinality: \(|\varnothing|=0\).
  • Universal subset fact: For any set \(A\), \(\varnothing\subseteq A\).
  • But membership is different: \(\varnothing\in A\) only if \(A\) literally contains the empty set as an element.

Examples

  • If \(S=\{a,b\}\): \(\varnothing\subseteq S\), but NOT \(\varnothing\in S\).
  • If \(T=\{\varnothing,\{a\}\}\): \(\varnothing\in T\).

Operations with \(\varnothing\)

For any set \(A\):

  • Union: \(A\cup\varnothing = A\)
  • Intersection: \(A\cap\varnothing = \varnothing\)
  • Difference: \(A - \varnothing = A\), \(\ \varnothing\setminus A = \varnothing\)
  • Complement (in \(U\)): \(U - \varnothing = U\)
  • Cardinalities: \(|A\cup\varnothing|=|A|\), \(|A\cap\varnothing|=0\)

DataFrame/Mask view of \(\varnothing\)

Think: empty mask = all False (selects no rows).

Element vs Subset

  • \(x\in S\) means \(x\) is one item in \(S\).
  • \(A\subseteq S\) means every element of \(A\) is in \(S\).

Examples (watch the braces!)

  • If \(S=\{a,b\}\) then:
    • \(a\in S\) is true; \(\{a\}\in S\) is false; \(\{a\}\subseteq S\) is true.
    • \(\emptyset \in S\) is false; \(\emptyset \subseteq S\) is true.
  • If \(T=\{\emptyset,\{a\}\}\) then:
    • \(\emptyset \in T\) is true; \(\{\emptyset\}\subseteq T\) is true.

Quick Checks

Let \(S=\{\texttt{tea},\texttt{coffee},\texttt{juice}\}\).

  1. \(\texttt{tea}\in S\) ____
  2. \(\{\texttt{tea}\}\in S\) ____
  3. \(\{\texttt{tea}\}\subseteq S\) ____
  4. \(\emptyset \subseteq S\) ____
  5. \(\{\texttt{water}\}\subseteq S\) ____

Power Set

Definition: \(\mathcal{P}(S)\) = the set of all subsets of \(S\).


Example:

If \(S=\{a,b\}\), \(\ \mathcal{P}(S)=\) ________________________

 

Cardinality:

If \(|S|=n\), then \(|\mathcal{P}(S)|=\) ________________________

Why \(2^n\)?

Bitstring encoding:
Consider \(S=\{s_1,\dots,s_n\}\). For each subset \(T\subseteq S\) define an indicator of membership: \[(b_1,\dots,b_n)\ \text{where } b_i=\begin{cases}1,& s_i\in T\\ 0,& s_i\notin T\end{cases}.\]

How many subsets of a set of size \(n\)?

Quick Check:

Let \(S=\{A,B,C\}\).

  • Bitstring \(101\) corresponds to subset \(\{\_\_\_\_\}\).
  • Subset \(\{B\}\) corresponds to bitstring \(\_\_\_\_\_\_\).

Empty Sets and Power Sets

  • \(\varnothing\in \mathcal{P}(A)\) (since \(\varnothing\subseteq A\))
  • \(\mathcal{P}(\varnothing)=\{\varnothing\}\) and \(|\mathcal{P}(\varnothing)|=1\)

Cartesian Product \(A\times B\)

Definition: \(A\times B=\{(a,b)\mid a\in A,\ b\in B\}\)

Cardinality: \(|A\times B|=|A|\cdot|B|\).

Example: \(A=\{\texttt{iced},\texttt{hot}\}\), \(B=\{\texttt{Latte},\texttt{Tea},\texttt{Mocha}\}\).

 

Then \[A\times B= \{(\texttt{iced},\texttt{Latte}),(\texttt{iced},\texttt{Tea}),(\texttt{iced},\texttt{Mocha}),\] \[(\texttt{hot},\texttt{Latte}),(\texttt{hot},\texttt{Tea}),(\texttt{hot},\texttt{Mocha})\},\]

and \(|A\times B|=2\cdot 3=6\).

Code