L2

January 8, 2018

1 Exploratory Data Analysis

CPSC 340: Machine Learning and Data Mining The University of British Columbia 2017 Winter Term 2 Notebook by Mike Gelbart, based on slides by Mark Schmidt.

```
In [12]: # lecture imports / dependencies
```

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd
import seaborn as sns
sns.set(style="ticks")
from sklearn.feature_extraction.text import CountVectorizer
from skimage.io import imread, imshow
```

1.1 Admin

- Get a CS ugrad account: https://www.cs.ubc.ca/getacct/
- Course website: https://github.ugrad.cs.ubc.ca/CPSC340-2017W-T2/home
- Course Piazza sign-up: https://piazza.com/class/j9uk5ecmb7e4ks
- Tutorials start next week
- The lectures will be a mix of PowerPoint and jupyter notebook (this)
- both will be available online
- you can view the "static" notebook directly on GitHub
- you can run the notebook locally and play around with it

1.2 Typical steps of ML

- 1. Identify question / task
- 2. Collect data
- 3. Clean and preprocess data
- 4. Exploratory data anlysis (EDA)
- 5. Feature and model selection
- 6. Train model
- 7. Evaluate and communicate results
- 8. Deploy working system

(but not necessarily in this order...) Today we'll discuss steps (3) and (4)

1.3 What does data look like?

Often, it is tabular (but certainly not always!).

Out[13]:	survive	d pclass	sex	age age	sibsp	par	ch	fare	embarked	class	\setminus
0		0 3	male	22.0	1		0	7.2500	S	Third	
1		1 1	female	e 38.0	1		0	71.2833	C	First	
2		1 3	female	26.0	0		0	7.9250	S	Third	
3		1 1	female	35.0	1		0	53.1000	S	First	
4		0 3	male	35.0	0		0	8.0500	S	Third	
	who	adult_male	deck	embark_	town a	live	al	one			
0	man	True	NaN	Southam	pton	no	Fa	lse			
1	woman	False	С	Cherb	ourg	yes	Fa	lse			
2	woman	False	NaN	Southam	pton	yes	Т	rue			
3	woman	False	С	Southam	pton	yes	Fa	lse			
4	man	True	NaN	Southam	pton	no	Т	rue			

• Each row is an **object** (or training example, or sample)

• Each column is a **feature** (or variable, covariate).

1.4 Types of features

- Categorical (e.g. survived, embark_town)
- Numerical (e.g. age, fare)
- Some are more ambiguous, like pclass: is this categorical or numerical?

Converting types:

- Many of our methods are meant to work with numerical features.
- We can convert categorical to numerical.

In [14]: pd.get_dummies(titanic, columns=["embarked"]).head()

Out[14]:	survived	pclass	sex	age	sibsp	parch	fare	class	who	\setminus
0	0	3	male	22.0	1	0	7.2500	Third	man	
1	1	1	female	38.0	1	0	71.2833	First	woman	
2	1	3	female	26.0	0	0	7.9250	Third	woman	
3	1	1	female	35.0	1	0	53.1000	First	woman	
4	0	3	male	35.0	0	0	8.0500	Third	man	
	adult_male	e deck	embark_t	own al	ive al	one em	barked_C	embark	ed_Q \	
0	True	e NaN	Southamp	ton	no Fa	lse	0		0	

1	False	С	Cherbourg	yes	False	1	0
2	False	NaN	Southampton	yes	True	0	0
3	False	С	Southampton	yes	False	0	0
4	True	NaN	Southampton	no	True	0	0
	$embarked_S$						
0	1						
1	0						
2	1						
3	1						

If we do this for all our features, we can now interpret objects as points in space.

Out[15]: (891, 280)

4

• So we now have 891 objects and 280 features.

1

- In other words, each object is a point in 280-dimensional space.
- This is why multivariable calculus is a prerequisite.

1.4.1 Other feature types: text data

In [16]: text = "The University of British Columbia (UBC) is a public research university with c

One approach: **bag of words** features.

```
In [17]: cv = CountVectorizer()
         feat = cv.fit_transform([text])
In [18]: for word, idx in cv.vocabulary_.items():
             print("%-14s%d" % (word, feat[0,idx]))
the
              1
              2
university
of
              1
              2
british
columbia
              2
ubc
              1
              1
is
              1
public
research
              1
with
              1
              1
campuses
and
              1
facilities
              1
in
              1
canada
              1
```

- Bag of words ignores the order of words but still can work well.
- You can interpret each document as a point in space, compute distances.

1.4.2 Other feature types: images

```
In [19]: img = imread("https://upload.wikimedia.org/wikipedia/commons/8/86/Irving_K._Barber_Libr
    plt.xticks([])
    plt.yticks([])
    imshow(img);
```


Photo credit: Wikipedia: UBC by CjayD, CC BY 2.0.

Out[22]: (8257536,)

- Now, again, the image is a point in space.
- But now the space is 8,257,536-dimensional!
- We'll talk about this towards the end of the course.

1.5 Data Cleaning

- ML+DM typically assume "clean" data.
- Ways that data might not be "clean":
- noise (e.g., distortion on phone).
- outliers (e.g., data entry or instrument error).
- missing values (no value available or not applicable)
- duplicated data (repetitions, or different storage formats).
- Any of these can lead to problems in analyses.
- want to fix these issues, if possible.
- some ML methods are robust to these.
- often, ML is the best way to detect/fix these.

1.6 How much data do we need?

- A difficult if not impossible question to answer.
- Usual answer: "more is better".
- With the warning: "as long as the quality doesn't suffer".
- Another popular answer: "ten times the number of features".
- I don't like this view. Features are not the enemy!

1.7 Feature aggregation

- Combine features to form new ones
- Useful if there are few examples of a particular case

In [23]: titanic['deck'].value_counts()

```
Out[23]: C 59

B 47

D 33

E 32

A 15

F 13

G 4

Name: deck, dtype: int64
```

```
In [24]: titanic_agg = titanic.copy()
```

```
# aggregate decks A and B into the "upper" deck category
titanic_agg["upper"] = titanic_agg['deck'].isin(("A","B"))
titanic_agg.tail()
```

Out[24]:	survived	pclass	sex	age age	sibsp	parc	ch	fare	embarked	class	\backslash
886	0	2	male	e 27.0	0		0	13.00	S	Second	
887	1	1	female	9.0	0		0	30.00	S	First	
888	0	3	female	e NaN	1		2	23.45	S	Third	
889	1	1	male	26.0	0		0	30.00	C	First	
890	0	3	male	e 32.0	0		0	7.75	Q	Third	
	who a	dult_male	deck	embark_	town al	ive	alo	ne u	pper		
886	man	True	NaN	Southam	pton	no	Tr	ue F	alse		
887	woman	False	В	Southam	pton	yes	Tr	ue	True		
888	woman	False	NaN	Southam	pton	no	Fal	se F	alse		
889	man	True	С	Cherb	ourg	yes	Tr	ue F	alse		
890	man	True	NaN	Queens	town	no	Tr	ue F	alse		

(Not shown: we should still fix up the NaNs here!)

1.8 Feature selection

```
In [25]: titanic_id = titanic.copy()
```

```
# Adding an irrelevant feature
titanic_id['id'] = titanic_id.index
titanic_id.head()
```

Out [25] :	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	\
0	0	3	male	22.0	1	0	7.2500	S	Third	
1	1	1	female	38.0	1	0	71.2833	C	First	
2	1	3	female	26.0	0	0	7.9250	S	Third	
3	1	1	female	35.0	1	0	53.1000	S	First	
4	0	3	male	35.0	0	0	8.0500	S	Third	

	who	adult_male	deck	embark_town	alive	alone	id
0	man	True	NaN	Southampton	no	False	0
1	woman	False	С	Cherbourg	yes	False	1
2	woman	False	NaN	Southampton	yes	True	2
3	woman	False	С	Southampton	yes	False	3
4	man	True	NaN	Southampton	no	True	4

- Remove features that are not relevant to the task.
- id probably not relevant for prediction.

1.9 Feature transformation

Discretization (binning): turn numerical data into categorical

2 26.0 3 35.0 4 35.0 Name: age, dtype: float64 In [27]: ages = pd.cut(titanic['age'], bins=(0,20,30,100)) ages_cat = pd.get_dummies(ages) pd.concat([titanic['age'], ages_cat],axis=1).head() Out[27]: (20, 30](30, 100](0, 20]age 22.0 0 0 0 1 1 38.0 0 0 1 2 26.0 0 1 0 3 35.0 0 0 1 4 35.0 0 0 1 Mathematical transformsations • e.g. log, exp, square, sqrt, etc. also, scaling/normalization In [28]: titanic_mod = titanic.copy() # fare --> sqrt(fare) titanic_mod['fare'] = np.sqrt(titanic_mod['fare']) titanic_mod.head() Out [28]: survived pclass sex sibsp parch fare embarked class \backslash age 0 0 3 male 22.0 1 2.692582 S Third 0 1 1 1 female 38.0 1 0 8.442944 C First 2 1 3 female 26.0 0 0 2.815138 S Third 3 1 1 female 35.0 1 0 7.286975 S First 4 0 3 male 35.0 0 2.837252 S Third 0 who adult_male deck embark_town alive alone 0 True NaN Southampton False man no False С Cherbourg yes False 1 woman 2 woman False NaN Southampton yes True yes False 3 False С Southampton woman 4 manTrue NaN Southampton True no

Example use case: something needs to be non-negative (exp) or shouldn't be non-negative (log).

1.10 Exploratory data analysis (EDA)

- You should always "look" at the data first.
- But how do you "look" at features and high-dimensional objects?
- Summary statistics
- Visualization
- ML + DM (later in course)

1.11 Categorical summary statistics

- Some summary statistics for a categorical variable:
- Frequencies of different classes.
- Mode: category that occurs most often.

In [29]: titanic['deck'].value_counts(normalize=True) # frequencies

Out[29]: C 0.290640 B 0.231527 D 0.162562 E 0.157635 A 0.073892 F 0.064039 G 0.019704 Name: deck, dtype: float64

In [30]: titanic['deck'].mode()[0]

Out[30]: 'C'

1.12 Continuous summary statistics

- Measures of location:
- Mean: average value.
- Median: value such that half points are larger/smaller.
- **Quantiles**: value such that *t* fraction of points are smaller.
- Measures of spread:
- Range: minimum and maximum values.
- Variance: measures how far values are from mean.

- Square root of variance is **standard deviation**.

• Intequantile ranges: difference between quantiles

In [31]: titanic['fare'].mean()

- Out[31]: 32.2042079685746
- In [32]: titanic['fare'].median()
- Out[32]: 14.4542

In [33]: titanic['fare'].quantile((0.25,0.5,0.75))

Out[33]:	0.25	7.9	9104	
	0.50	14.4	4542	
	0.75	31.0	0000	
	Name:	fare,	dtype:	float64

In [34]: titanic['fare'].min()

Out[34]: 0.0

In [35]: titanic['fare'].max()

```
Out [35]: 512.3292000000001
```

```
In [36]: titanic['fare'].var()
```

```
Out[36]: 2469.436845743117
```

```
In [37]: titanic['fare'].std()
```

Out[37]: 49.693428597180905

Notice that the mean and std are sensitive to extreme values:

```
In [38]: data = [0,1,2,3,3,5,7,8,9,10,14,15,17,200] # the "200" is an outlier
        print("Mean with outlier :", np.mean(data))
        print("Mean without outlier:", np.mean(data[:-1]))
Mean with outlier : 21.0
Mean without outlier: 7.23076923077
In [39]: print("Std with outlier :", np.std(data))
        print("Std without outlier:", np.std(data]))
        Std with outlier : 49.9127810714
Std without outlier: 5.35154680952
```

Whereas the median is not:

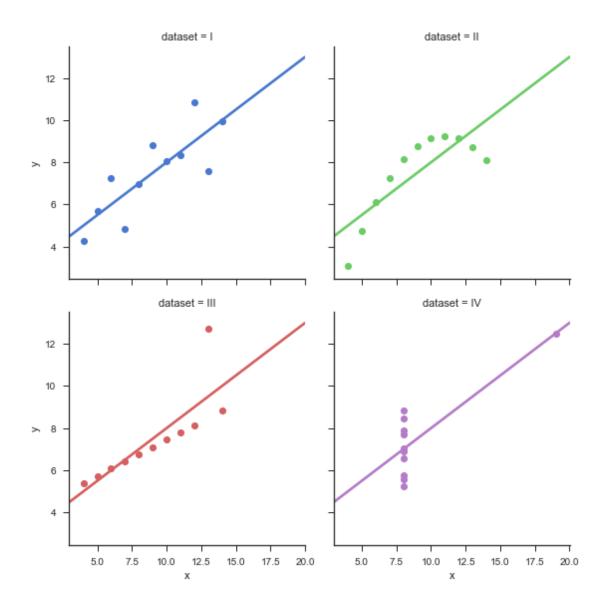
1.13 Distances and similarities

- There are also summary statistics between features.
- Hamming distance:
 - Number of elements in the vectors that aren't equal.
- Euclidean distance:
 - How far apart are the vectors?
- Correlation:
 - Does one increase/decrease linearly as the other increases?
 - Between -1 and 1.

1.14 Limitations of summary statistics

- Summary statistics can be misleading
- A famous example is Anscombe's quartet, four datasets with:
- Almost same means.
- Almost same variances.
- Almost same correlations.
- Almost same linear fits.
- Look completely different.

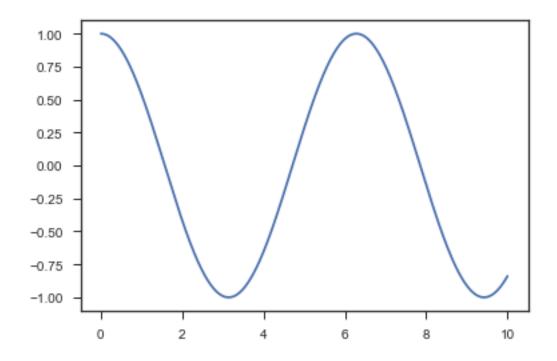
In [41]: # Code below from seaborn documentation: https://seaborn.pydata.org/examples/anscombes_



1.15 Visualization

- You can learn a lot from 2D plots of the data:
- Patterns, trends, outliers, unusual patterns.
- We'll use the matplotlib library to do most of our basic plotting.
- For fancier plots, you can try seaborn.

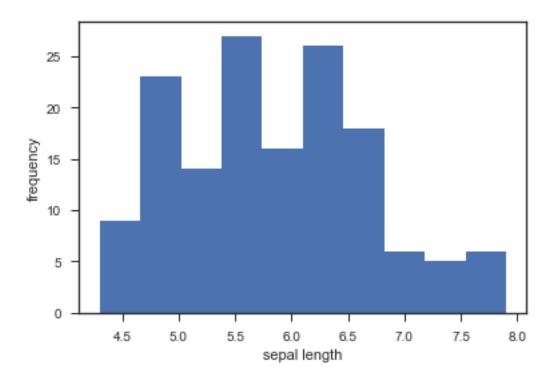
1.16 Basic plot



Out[43]:	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

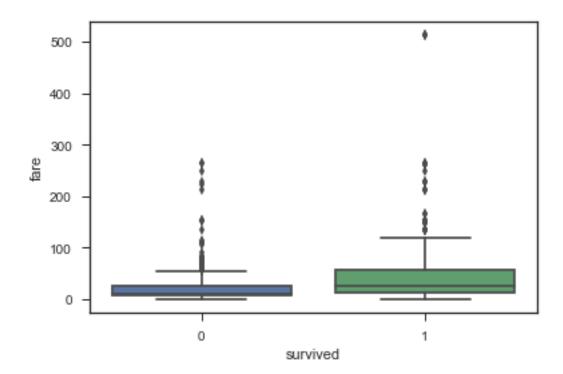
1.17 Histogram

```
In [44]: plt.hist(iris['sepal_length'])
    plt.xlabel('sepal length')
    plt.ylabel('frequency');
    # sns.distplot(iris["sepal_length"]);
```

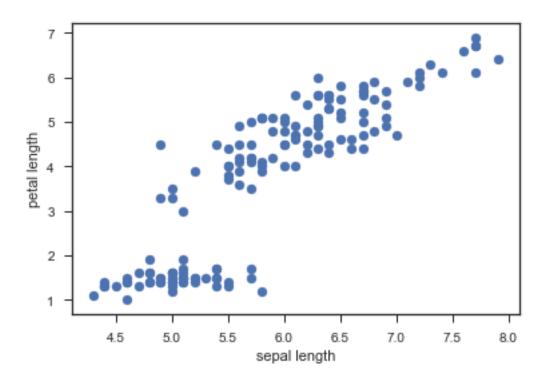


1.18 Box plot

In [45]: sns.boxplot(x="survived", y="fare", data=titanic);

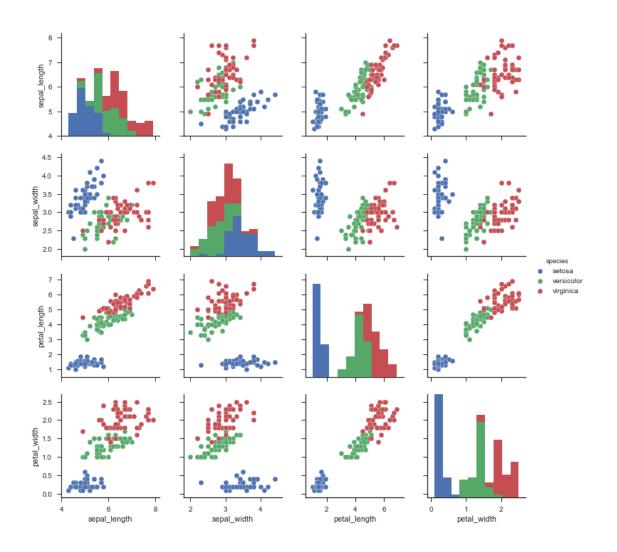


1.19 Scatterplot



1.20 Scatterplot array

In [48]: sns.pairplot(iris, hue="species");



1.21 CPSC 340 meta-discussion

- This is the only CPSC 340 lecture on data cleaning and EDA.
- That is not representative of the time typically devoted to these tasks.
- In fact, data cleaning is often the most time intensive step.
- This is a weakness of the course.
- But not as bad if you're aware of it.

1.22 Summary

- Typical data mining steps:
- Involves data collection, preprocessing, analysis, and evaluation.
- Object-feature representation and categorical/numerical features.
- Transforming non-vector objects to vector representations.
- Feature transformations:
- To address coupon collecting or simplify relationships between variables.

- Exploring data:Summary statistics and data visualization.Post-lecture bonus slides: other visualization methods.