
L13

January 4, 2019

1 Gradient Descent

CPSC 340: Machine Learning and Data Mining
The University of British Columbia
2017 Winter Term 2
Mike Gelbart

In [18]: import numpy as np

import numpy.random as npr

import sklearn

import sklearn.linear_model

import matplotlib.pyplot as plt

%matplotlib inline

%autosave 0

Autosave disabled

Learning goals:

• why do we need gradient descent? Can’t we use the normal equations for everything?
• what is the step size? what role does it play?
• how do I implement gradient descent?
• what’s the difference between the data space and the parameter space?

1.1 Motivation 1: large-scale least squares

• Normal equations costs O(nd2 + d3)
• Can we do better for large d?

1.2 Motivation 2: least squares with outliers

In [33]: def gen_outlier_data(n=40,Noutliers=3):

generate random data

x = np.random.randn(n)

y = 10*x

add random outliers

y[:Noutliers] = -100*(x[:Noutliers]+np.random.randn(Noutliers))

1

X = x[:,None] # reshape for sklearn

return X,y

fit a linear regression model

X,y = gen_outlier_data()

lr = sklearn.linear_model.LinearRegression()

lr.fit(X,y)

plt.plot(X,y,'.')

plt.plot(X, lr.predict(X));

Can we do better?

1.3 Gradient descent

use of the gradient: optimization The gradient gives us the direction of fastest increase of a
function with respect to its parameters.

The (negative) gradient gives us a direction of travel (fastest decrease), if we want to minimize
a function!

If we are trying to minimize f (w), then gradient descent works by starting with some initial
guess w0 and then updating with

wt+1 = wt − αt ∇ f (wt)

• wt refers to the value of w (the weights/parameters) at iteration t of gradient descent.

2

• Gradient descent is an algorithm for minimization. The corresponding method for maxi-
mization is called gradient ascent.

• The step size should be small to guarantee that the loss goes down. If it’s too big the loss
could go up.

• Converges to a global optimium if f is convex.
• (optional note): physicists like me tend to think about units. Note that ∇ f and w have

different units, which means the learning rate has units. That seems weird, since we’d hope
to pick the learning rate irrespective of the scaling of our probelm. If this bothers you, see
this blog post or the findMin function provided with a3.

• We can use this to minimize losses like the squared error (above) and robust losses (coming
soon):

f (w) =
n

∑
i=1

(
wTxi − yi

)2

magnitude vs. direction In the above we are making use of the magnitude of the gradient, not
just its direction. This actually makes sense. When the magnitude is small, we are in a flatter area
and want to take smaller steps.

However, some methods exist that just use the direction. For example given a direction you
can do a line search.

picking the learning rate In general picking α is a pain, especially when we get to stochastic
gradient descent (later in the course). There is theory on this regarding convergence guarantees
and convergence rates. The learning rate is sometimes decreased over time. Fancier methods pick
the learning rate adaptively (see a3 code).

termination conditions We can stop when ||∇ f || is sufficiently small (because this indicates
we’re at a local minimum), or when a specified maximum number of iterations are reached (be-
cause we want to limit the computational expense).

1.4 Least squares via normal equations vs. gradient descent:

• Normal equations cost O(nd2 + d3).
• forming XTX costs O(nd2) and solving a d × d linear system costs O(d3)
• Gradient descent costs O(ndt) to run for t iterations.
• computing ∇ f (w) = XTXw − XTy only costs O(nd)
• Gradient descent can be faster when d is very large
• well, this is just big-O, we don’t know the coeffcients
• matrix operations are fast. iteration is slow, especially in Python
• assuming t doesn’t depend on d (see CPSC 540)
• one advantage is that we can control the accuracy by controlling the number of iterations

1.5 Experiments: does it work?

In [34]: # generate data

d = 10

3

http://timvieira.github.io/blog/post/2016/05/27/dimensional-analysis-of-gradient-ascent/
https://en.wikipedia.org/wiki/Line_search

n = 1000

X = npr.randn(n,d)

y = npr.randn(n)

Approach 1: sklearn’s LinearRegression in Python

In [35]: # sklearn least squares

lr = sklearn.linear_model.LinearRegression()

lr.fit(X,y)

print("Intercept: %f" % lr.intercept_)

print("Weights: %s" % lr.coef_)

Intercept: 0.026786

Weights: [-7.94965323e-02 -6.89201836e-05 -5.68005257e-02 4.59495768e-02

9.96527271e-04 -6.33594296e-04 -1.63302976e-02 -2.57339607e-02

3.27755010e-02 3.44966248e-02]

Approach 2: normal equations

In [36]: # add a feature of all 1's for intercept

X = np.append(np.ones(X.shape[0])[:,None], X, axis=1)

In [37]: weights = np.linalg.solve(X.T@X,X.T@y)

print("Intercept: %f" % weights[0])

print("Weights: %s" % weights[1:])

Intercept: 0.026786

Weights: [-7.94965323e-02 -6.89201836e-05 -5.68005257e-02 4.59495768e-02

9.96527271e-04 -6.33594296e-04 -1.63302976e-02 -2.57339607e-02

3.27755010e-02 3.44966248e-02]

Approach 3: gradient descent

In [38]: alpha = 0.00001

grad_f = lambda w: X.T@(X@w) - X.T@y

In [39]: w = np.zeros(X.shape[1]) # initial guess

g = grad_f(w)

while np.linalg.norm(g) > 0.001:

g = grad_f(w)

w -= alpha*g

4

w = w - alpha*g

print("Intercept: %f" % w[0])

print("Weights: %s" % w[1:])

Intercept: 0.026785

Weights: [-7.94961600e-02 -6.86061092e-05 -5.68001029e-02 4.59496352e-02

9.96135548e-04 -6.33728601e-04 -1.63301708e-02 -2.57333259e-02

3.27755459e-02 3.44961252e-02]

From the above, you can see that all three methods generate roughly the same weights. This is
comforting.

1.6 Robust regression with gradient descent

If we can solve least squares in closed form with linear algebra, why do we want gradient descent?
Answer: the fact that we can write the solution in closed form as a system of linear equations

is amazing! (Think about it.) This is a very special case. For almost any other loss function, we
can’t do this.

For example let’s consider the absolute value objective:

f (w) =
n

∑
i=1

∣∣∣wTxi − yi

∣∣∣
This is the sum of absolute values instead of the sum of squares. This will hopefully give

us robust regression because big distances aren’t amplified in the objective (let’s dwell on this
reasoning for a bit).

Note on smoothness: Non-smooth functions are harder to minimize than smooth functions.
Unlike smooth functions, the gradient may not get smaller near a minimizer.

Experiments below: this time we add outliers to mess up least squares, and then try switching
to the absolute value objective.

In [44]: X,y = gen_outlier_data()

x = X.flatten()

fit a linear regression model

lr = sklearn.linear_model.LinearRegression()

lr.fit(X,y)

print("w = %f" % lr.coef_)

print("b = %f" % lr.intercept_)

plt.plot(X,y,'.')

plt.plot(X, lr.predict(X))

plt.xlabel('x')

plt.ylabel('y');

w = -6.621631

b = -15.276523

5

For linear regression in one dimension our L1 objective becomes

f (w, β) =
n

∑
i=1

|wxi + β − yi|

The gradient (where defined) is

∂ f
∂w

=
n

∑
i=1

xisign (wxi + β − yi)

∂ f
∂β

=
n

∑
i=1

sign (wxi + β − yi)

In [45]: w = 0

= 0

= 1

Nsteps = 1000

for t in range(1,Nsteps):

dLdw = np.sum(x*np.sign(w*x+-y))

dLd = np.sum(np.sign(w*x+-y))

w -= (/t)*dLdw # we are decreasing the step size over time to deal with the non-smoothness

-= (/t)*dLd # the details are beyond the scope of the course, see CPSC 540

plt.figure()

6

plt.plot(x,y,'.')

plt.plot(x,w*x+)

plt.xlabel('x')

plt.ylabel('y')

plt.show()

print("w = %f" % w)

print(" = %f" %)

w = 10.013238

= -0.011845

1.7 Gradient descent is not just for robust regression!

We can use it for a large class of models. With some caveats, you are now empowered to minimize
things!

For example, one can try the opposite of robust regression, brittle regression, that just tries to
minimize the maximum error.

1.8 Why gradient descent?

A common misconception from previous terms of CPSC 340:

7

We use gradient descent because of the non-smooth loss.

Not true!! We use it because the normal equations only apply to linear least squares. We can
use gradient descent in all sorts of cases. The non-smooth just complicates things a bit.

1.9 Gradient descent is not the only game in town

There are many optimization algorithms out there. Gradient descent is not applicable in all con-
texts and it is certainly not the best method in all contexts! We focus on it because:

• it is relatively simple to understand and implement.
• the time complexity is linear in d per iteration.
• we can generalize it to stochastic gradient descent, which is coming later in the course.
• see CPSC 406 for much more.

Through Python’s scientific libraries like scipy.optimize you can access a variety of methods
as black-box optimizers. For example see scipy’s implementation of the popular L-BFGS method,
which is more sophisticated but still linear in d per iteration.

1.10 The different decisions we make

We should try to keep separate (in our minds) the following choices:

• the model (e.g. linear)
• the loss (e.g. squared error)
• the optimization method (e.g. gradient descent)

We can (roughly) pick these independently of each other. Not quite because the choice of opti-
mization method may depend on the choice of model/loss: e.g. we can use the normal equations
as our optimization method if we’re doing least squares.

1.11 What space am I in?

A key skill is being able to move around (conceptually) between x (data) space and w (parameter)
space. The above plots are in y vs. x space. Here’s what the loss looks like in parameter space:

In [46]: def plot_loss(loss_fun, X, y): # reading/understanding this plotting code is optional

m = 100

w_lin = np.linspace(-20.0, 20.0, m)

b_lin = np.linspace(-20.0, 20.0, m)

w_grid, b_grid = np.meshgrid(w_lin, b_lin)

w_flat = w_grid.flatten()

b_flat = b_grid.flatten()

pred = w_flat[None]*X + b_flat[None]

loss = loss_fun(pred, y)

loss_grid = np.reshape(loss,[m,m])

8

https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.fmin_l_bfgs_b.html

plt.figure()

CS = plt.contour(w_grid, b_grid, loss_grid)

imin = np.argmin(loss_grid)

plt.plot(w_flat[imin], b_flat[imin], 'r*', markersize=15)

plt.xlabel('w')

plt.ylabel('')

plt.clabel(CS, inline=1, fontsize=10)

plt.title('Loss in w-$$ space')

plt.show()

squared_loss_fun = lambda pred, y: np.sum((pred-y[:,None])**2,axis=0)

plot_loss(squared_loss_fun, X, y)

In [47]: abs_loss_fun = lambda pred, y: np.sum(np.abs(pred-y[:,None]),axis=0)

plot_loss(abs_loss_fun, X, y)

9

Key intuition: every point in weight space corressponds to a model (in this case a line) in input-
output space.

• In general, doing supervised learning in d dimensions, the data space will be mapping from
d dimensions to 1 dimensional.

• For linear models, the number of parameters is d + 1 (d weights plus an intercept), but this
isn’t necessarily the case for other models.

In [48]: # a few iterations of GD showing the loss space and line space

you don't need to read/understand this code (it's optional)

x = np.random.randn(40)

y = 3*x-9

X = x[:,None]

w = 0

= 0

= 0.02

Nsteps = 5

def make_plot_pairs(w,,t,titles=False):

plt.subplot(Nsteps+1,2,2*t+1)

plt.plot(x,y,'.')

plt.plot(x,w*x+)

10

plt.ylabel('iteration %d' % t)

if titles:

plt.title("Data space")

plt.subplot(Nsteps+1,2,2*t+2)

m = 100

w_lin = np.linspace(-10.0, 10.0, m)

_lin = np.linspace(-10.0, 10.0, m)

w_grid, _grid = np.meshgrid(w_lin, _lin)

w_flat = w_grid.flatten()

_flat = _grid.flatten()

pred = w_flat[None]*X + _flat[None]

loss = squared_loss_fun(pred, y)

loss_grid = np.reshape(loss,[m,m])

imin = np.argmin(loss_grid)

plt.plot(w_flat[imin], _flat[imin], 'r*', markersize=15)

CS = plt.contour(w_grid, _grid, loss_grid)

plt.plot(w, , 'b*', markersize=15)

plt.clabel(CS, inline=1, fontsize=10)

if titles:

plt.title("Parameter space")

plt.figure(figsize=(8, 20))

make_plot_pairs(w,,0,True)

for t in range(Nsteps):

dLdw = np.sum(x*(w*x+-y))

dLd = np.sum(w*x+-y)

w -= *dLdw

-= *dLd

make_plot_pairs(w,,t+1)

print("w = %f" % w)

print(" = %f" %)

w = 2.987198

= -8.984138

11

12

1.11.1 Robust regression intuition (to read over later)

The loss is the sum of the absolute vertical distances between the points and the line. Let’s assume
you have 3 outliers all on the same side of the line, which are dragging the line up/down. Imagine
shifting the line in towards the outliers by some small amount ϵ. You have 3 points (the outliers)
that are happier, meaning the loss goes down by 3ϵ. But, supposing there are 40 non-outlier points,
you’ve upset those 40 points, meaning the loss goes up by 40ϵ. So even moving the slightest bit
upwards, or any amount for that matter, results in a worse (higher loss). That’s why the robust
fit is "perfect" rather than "close". You can think of it as voting and each point gets one vote; the
outliers don’t get more important votes than the non-outliers. So 40 beats 3. In real situations
this reasoning doesn’t apply exactly because the non-outliers will not lie perfectly on a line, and
because you’ll be in d > 1, but the general thought process applies.

We can go through the same thought experiment with least squares. If we move up by ϵ then
the change in the loss function due to the outliers might be huge. For example if the outliers are
currently 10 units away from the line and ϵ = 1 then we go from a loss of 102 = 100 to 92 = 81, so
the loss decreases by 19 units for each outlier! Whereas for the non-outliers the loss increases from
02 to 12, and so the net increase is 1 unit of loss per point. Thus 3 outliers can actually overrule
40 non-outliers and the line starts to move. Until it reaches that equilibrium where the loss is
minimized.

In fact, the above is an extension of the idea that the median of a bunch of numbers minimizes
the L1 error and the mean minimizes the L2 error. The robustness of the median that we discussed
early on in the course is this same effect. This is also related to k-means taking the mean and thus
minimizing L2.

1.11.2 Smooth approximations and the Huber loss

The absolute value loss is non-smooth. Although things above looked OK, in general it’s not OK
to naively ignore this issue (gradient descent will not asymptotically converge to the true solution,
the above looks OK because we don’t need a high accuracy solution). One way to avoid this issue
is to use a smooth approximation to the loss. For example we can minimize the Huber objective

n

∑
i=1

h
(

yi − w⊤xi

)
where

h(z) ≡
{

1
2 z2 if |z| ≤ 1
|z| − 1

2 if |z| > 1

with gradient descent. This will hopefully give us robust regression because big distances
aren’t amplified in the objective.

In [49]: huber = lambda z: 0.5*z**2*(np.abs(z)<=1) + (np.abs(z)-0.5)*(np.abs(z)>1)

grid = np.linspace(-3,3,1000)

plt.plot(grid, np.abs(grid), label="abs")

plt.plot(grid, huber(grid), 'r', label="huber")

13

plt.legend()

plt.show()

For linear regression in one dimension our objective becomes

f (w, β) =
n

∑
i=1

h (wxi + β − yi)

The gradient is

∂ f
∂w

=
n

∑
i=1

xih′ (wxi + β − yi)

∂ f
∂β

=
n

∑
i=1

h′ (wxi + β − yi)

where

h′(z) =

{
z if |z| ≤ 1
sign(z) if |z| > 1

Minimizing this objective yields the robust fit, and in general is a very sensible thing to do!

In [50]: X,y = gen_outlier_data()

x=X.flatten()

w = 0

= 0

= 0.01

14

Nsteps = 1000

yhat = lambda x,w,b: w*x+b

huber_deriv = lambda z: z*(np.abs(z)<=1) + np.sign(z)*(np.abs(z)>1)

for t in range(Nsteps):

dLdw = -np.sum(x*huber_deriv(y-yhat(x,w,)))

dLd = -np.sum(huber_deriv(y-yhat(x,w,)))

w -= *dLdw

-= *dLd

print("w = %f" % w)

print("b = %f" %)

plt.plot(x,y,'.')

plt.plot(x,w*x+);

w = 10.029835

b = -0.026649

1.12 Log-sum-exp approximation (I bet I won’t get to this in 50min)

For the brittle regression, discussed above, we can use the loss f (w) = ||Xw − y||∞ where ||r||∞ ≡
maxi{|ri|}. A smooth approximation to the max function is

15

max
i

{zi} ≈ log

(
∑

i
exp(zi)

)

• We will use this several times in the course, including in a3
• In a3 you use it as an approximation of max{z,−z} which is another way of writing |z|.
• The intuition is that the largest element is magnified exponentially, so we can roughly neglect

the rest
• This reduces it to log (∑i exp(zi)) ≈ log (exp(maxi{zi})) = maxi{zi}
• This approximation can be used for robust regression or brittle regression, but in very dif-

ferent ways. Take your time to understand the distinction here!

1.12.1 Outliers in the features

We’ve been talking about "robust" regression with respect to strange values in y. But this can also
happen in the features, X. Some of the methods in the Outlier Detection lecture apply, but in
general we don’t do a full treatment of this issue in CPSC 340. For more on this, see CPSC 540.

1.13 Summary

• Gradient descent finds stationary point of differentiable function.
• Finds global optimum if function is convex.
• Robust regression using L1-norm is less sensitive to outliers.
• Smooth approximations:
• Let us apply gradient descent to non-smooth functions.
• Huber loss is a smooth approximation to absolute value.
• Log-Sum-Exp is a smooth approximation to maximum.

16

	Gradient Descent
	Motivation 1: large-scale least squares
	Motivation 2: least squares with outliers
	Gradient descent
	Least squares via normal equations vs. gradient descent:
	Experiments: does it work?
	Robust regression with gradient descent
	Gradient descent is not just for robust regression!
	Why gradient descent?
	Gradient descent is not the only game in town
	The different decisions we make
	What space am I in?
	Robust regression intuition (to read over later)
	Smooth approximations and the Huber loss

	Log-sum-exp approximation (I bet I won't get to this in 50min)
	Outliers in the features

	Summary

