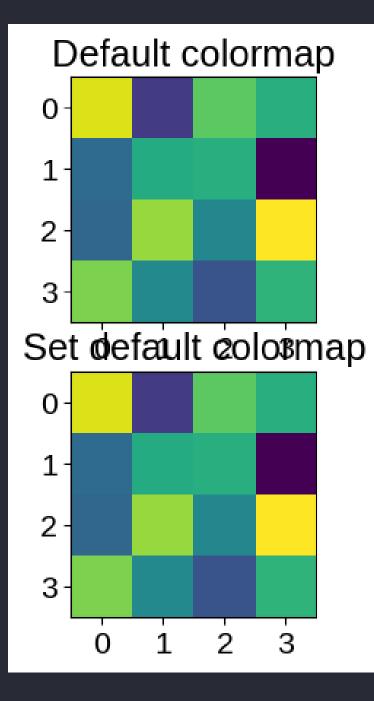
CPSC 330 Lecture 15: DBSCAN, Hierarchical Clustering



iClicker Exercise 15.1

Select all of the following statements which are TRUE.

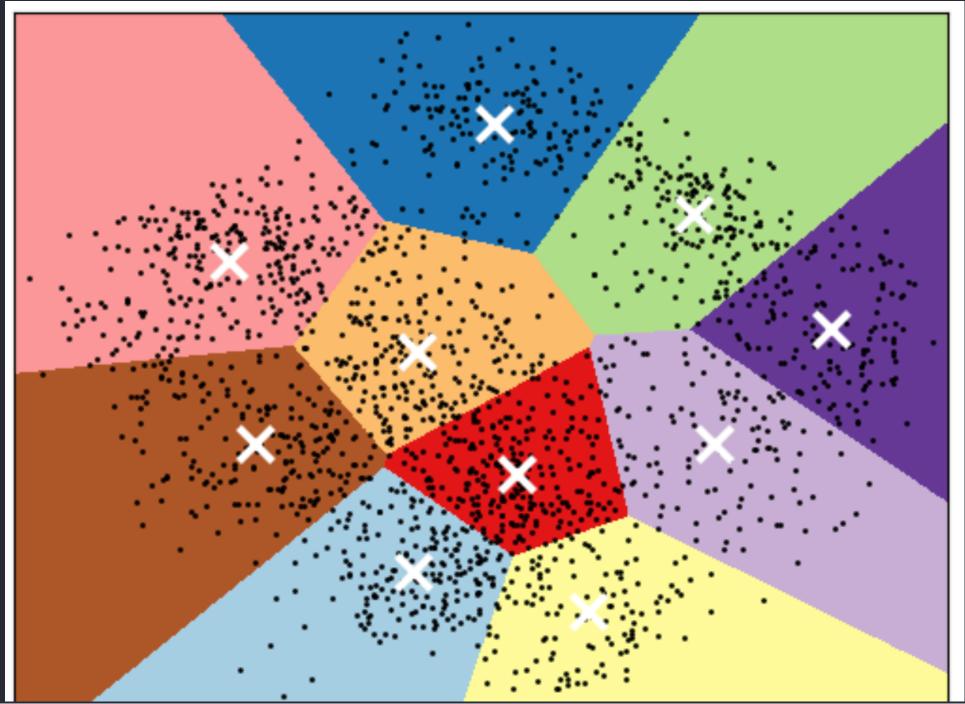
- a. Similar to K-nearest neighbours, K-Means is a non parametric model.
- b. The meaning of K in K-nearest neighbours and K-Means clustering is very similar.
- c. Scaling of input features is crucial in clustering.
- d. In clustering, it's almost always a good idea to find equalsized clusters.

Limitations of K-means

Shape of clusters

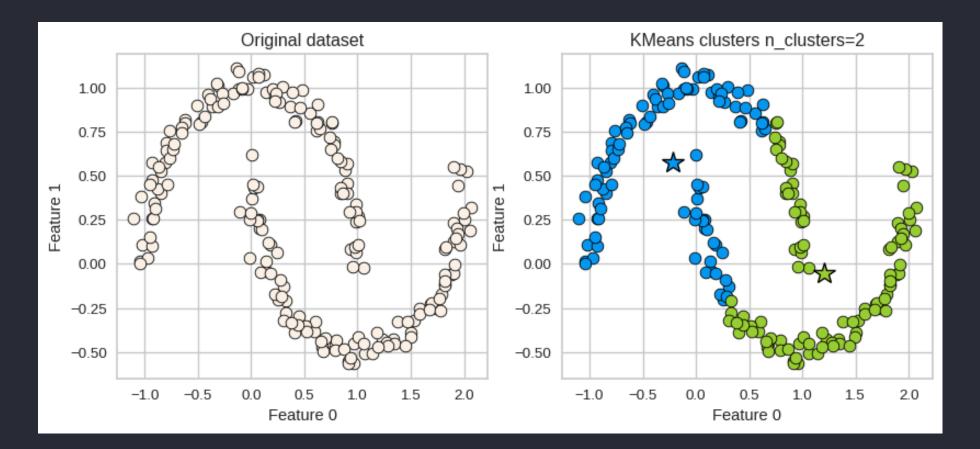
5

• Good for spherical clusters of more or less equal sizes



K-Means: failure case 1

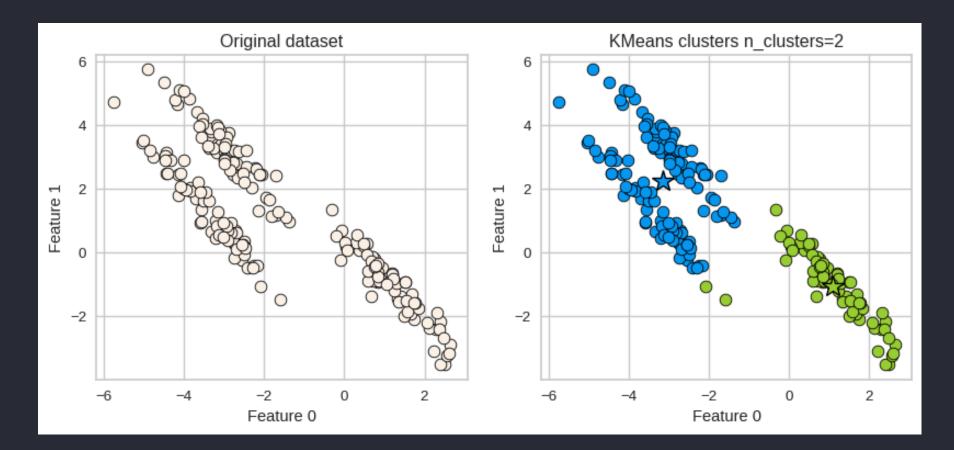
 K-Means performs poorly if the clusters have more complex shapes (e.g., two moons data below).



K-Means: failure case 2

K-Means: failure case 3

 It assumes that all directions are equally important for each cluster and fails to identify non-spherical clusters.



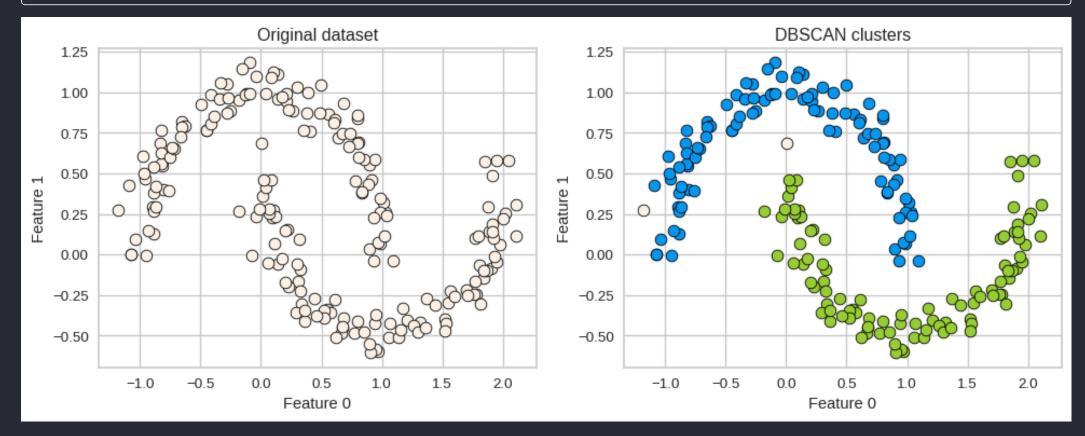
Can we do better?

DBSCAN

- Density-Based Spatial Clustering of Applications with Noise
- A density-based clustering algorithm

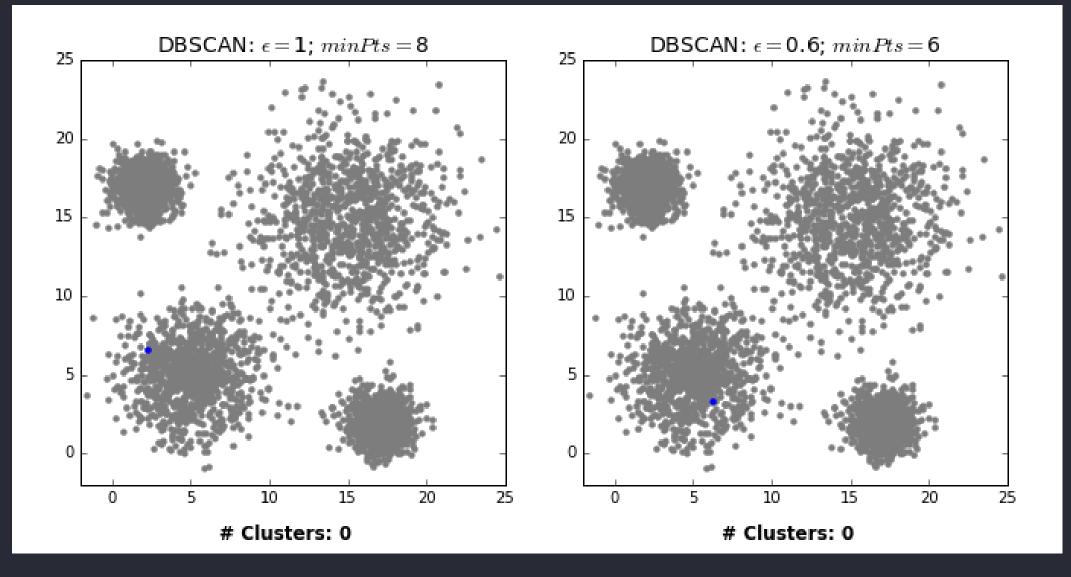
DBSCAN

- 1 X, y = make_moons(n_samples=200, noise=0.08, random_state=42)
- 2 dbscan = DBSCAN(eps=0.2)
- 3 dbscan.fit(X)
- 4 plot_original_clustered(X, dbscan, dbscan.labels_)



UBC

How does it work?



UBC Computer Science

DBSCAN Analogy

Consider DBSCAN in a social context:

- Social butterflies (♥): Core points
- Friends of social butterflies who are not social butterflies: Border points
- Lone wolves (): Noise points

Two main hyperparameters

- eps: determines what it means for points to be "close"
- min_samples: determines the number of neighboring points we require to consider in order for a point to be part of a cluster

DBSCAN: failure cases

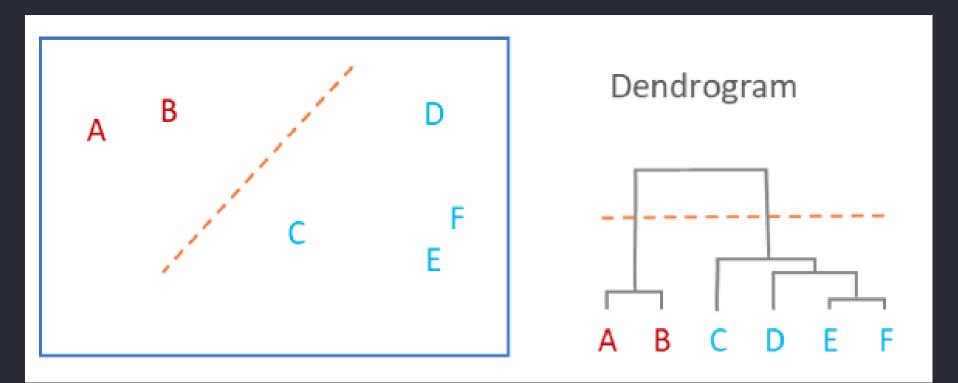
- Let's consider this dataset with three clusters of varying densities.
- K-Means performs better compared to DBSCAN. But it has the benefit of knowing the value of *K* in advance.

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

Let's take a break!

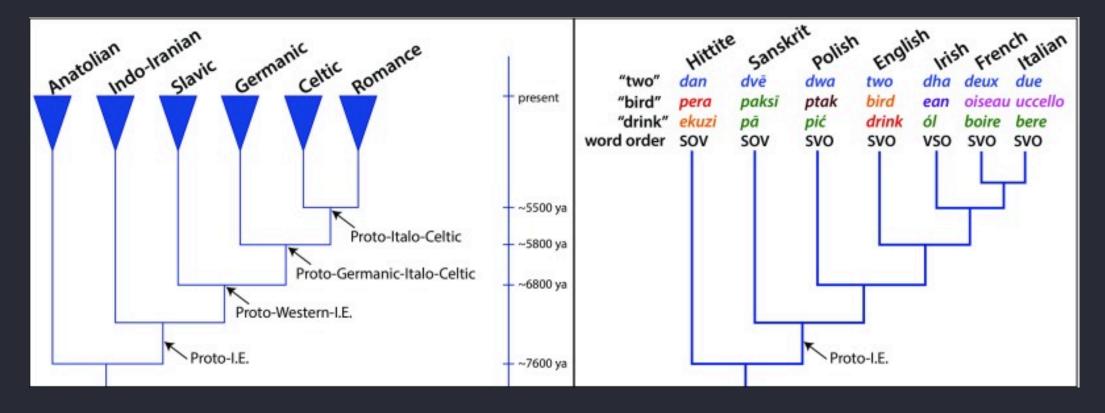
Dendrogram

Definition: visual representation of a tree, in particular, the hierarchical representation of data...



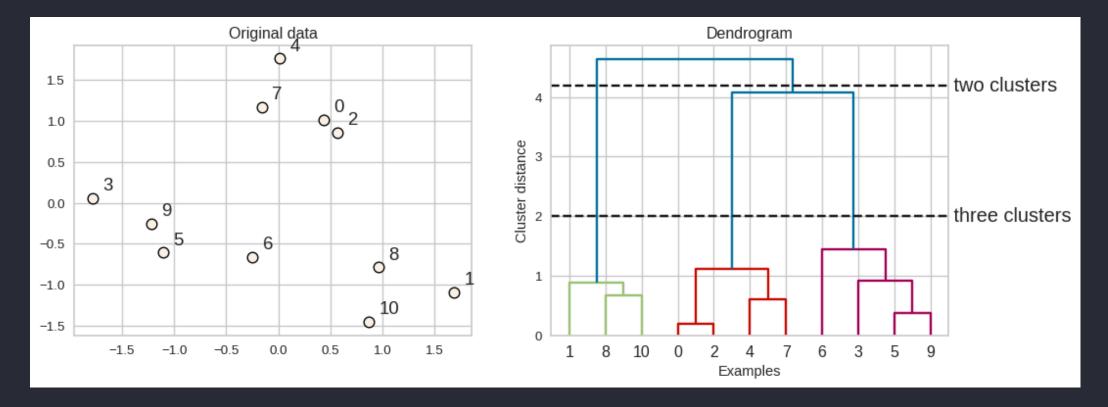
UBC Computer Science

Example: Languages



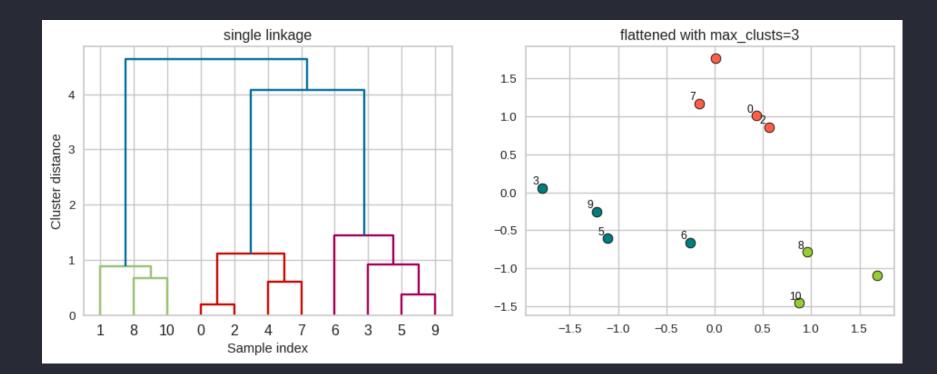
Source

Hierarchical clustering



Flat clusters

- This is good but how can we get cluster labels from a dendrogram?
- We can bring the clustering to a "flat" format use fcluster



Linkage criteria

- When we create a dendrogram, we need to calculate distance between clusters. How do we measure distances between clusters?
- The linkage criteria determines how to find similarity between clusters:
- Some example linkage criteria are:
 - Single linkage \rightarrow smallest minimal distance, leads to loose clusters
 - Complete linkage \rightarrow smallest maximum distance, leads to tight clusters
 - Average linkage → smallest average distance between all pairs of points in the clusters
 - Ward linkage → smallest increase in within-cluster variance, leads to equally sized clusters

Activity

• Fill in the table below

Clustering Method	KMeans	DBSCAN	Hierarchical Clustering
Approach			
Hyperparameters			
Shape of clusters			
Handling noise			
Examples			

Let's take a break!

UBC Computer Science

Group Work: Class Demo & Live Coding

For this demo, each student should click this link to create a new repo in their accounts, then clone that repo locally to follow along with the demo from today.

All credit to Dr. Varada Kolhatkar for putting this together!