
Lecture 6: Column
transformer and text

features
Firas Moosvi (Slides adapted from Varada Kolhatkar)

1

2

Recap: Preprocessing
mistakes

3

Data
X, y = make_blobs(n_samples=100, centers=3, random_state=12, cluster_std=5) # make synthetic data1
X_train_toy, X_test_toy, y_train_toy, y_test_toy = train_test_split(2
 X, y, random_state=5, test_size=0.4) # split it into training and test sets3
Visualize the training data4
plt.scatter(X_train_toy[:, 0], X_train_toy[:, 1], label="Training set", s=60)5
plt.scatter(6
 X_test_toy[:, 0], X_test_toy[:, 1], color=mglearn.cm2(1), label="Test set", s=607
)8
plt.legend(loc="upper right")9

4

❌ Bad ML 1
What’s wrong with the approach below?

scaler = StandardScaler() # Creating a scalert object 1
scaler.fit(X_train_toy) # Calling fit on the training data 2
train_scaled = scaler.transform(3
 X_train_toy4
) # Transforming the training data using the scaler fit on training data5

6
scaler = StandardScaler() # Creating a separate object for scaling test data7
scaler.fit(X_test_toy) # Calling fit on the test data8
test_scaled = scaler.transform(9
 X_test_toy10
) # Transforming the test data using the scaler fit on test data11

12
knn = KNeighborsClassifier()13
knn.fit(train_scaled, y_train_toy)14
print(f"Training score: {knn.score(train_scaled, y_train_toy):.2f}")15
print(f"Test score: {knn.score(test_scaled, y_test_toy):.2f}") # misleading scores16

Training score: 0.63
Test score: 0.60

5

Scaling train and test data separately

6

❌ Bad ML 2
What’s wrong with the approach below?

join the train and test sets back together1
XX = np.vstack((X_train_toy, X_test_toy))2

3
scaler = StandardScaler()4
scaler.fit(XX)5
XX_scaled = scaler.transform(XX)6

7
XX_train = XX_scaled[:X_train_toy.shape[0]]8
XX_test = XX_scaled[X_train_toy.shape[0]:]9

10
knn = KNeighborsClassifier()11
knn.fit(XX_train, y_train_toy)12
print(f"Training score: {knn.score(XX_train, y_train_toy):.2f}") # Misleading score13
print(f"Test score: {knn.score(XX_test, y_test_toy):.2f}") # Misleading score14

Training score: 0.63
Test score: 0.55

7

❌ Bad ML 3
What’s wrong with the approach below?

knn = KNeighborsClassifier()1
2

scaler = StandardScaler()3
scaler.fit(X_train_toy)4
X_train_scaled = scaler.transform(X_train_toy)5
X_test_scaled = scaler.transform(X_test_toy)6
cross_val_score(knn, X_train_scaled, y_train_toy)7

array([0.25 , 0.5 , 0.58333333, 0.58333333, 0.41666667])

8

Improper preprocessing
9

Proper preprocessing
10

Recap: sklearn Pipelines
Pipeline is a way to chain multiple steps (e.g., preprocessing + model fitting) into a
single workflow.

Simplify the code and improves readability.

Reduce the risk of data leakage by ensuring proper transformation of the training and
test sets.

Automatically apply transformations in sequence.

Example:

Chaining a StandardScaler with a KNeighborsClassifier model.

from sklearn.pipeline import make_pipeline1
2

pipe_knn = make_pipeline(StandardScaler(), KNeighborsClassifier())3
4

Correct way to do cross validation without breaking the golden rule. 5
cross_val_score(pipe_knn, X_train_toy, y_train_toy) 6

array([0.25 , 0.5 , 0.5 , 0.58333333, 0.41666667])

11

Group Work: Class Demo & Live
Coding
For this demo, each student should to create a new repo in their accounts,
then clone that repo locally to follow along with the demo from today.

click this link

12

https://github.com/new?template_name=lecture06_demo&template_owner=ubc-cpsc330

sklearn’s ColumnTransformer
Use ColumnTransformer to build all our transformations together into one object

Use a column transformer with sklearn pipelines.

13

