Lecture 5: Preprocessing and sklearn pipelines

Firas Moosvi (Slides adapted from Varada Kolhatkar)

Announcements

2

Recap

- Decision trees: Split data into subsets based on feature values to create decision rules
- k-NNs: Classify based on the majority vote from k nearest neighbors
- SVM RBFs: Create a boundary using an RBF kernel to separate classes

3

Synthesizing existing knowledge

Recap

Aspect	Decision Trees	K-Nearest Neighbors (KNN)	Support Vector Machines (SVM) with RBF Kernel
Main hyperparameters	Max depth, min samples split	Number of neighbors (<i>k</i>)	C (regularization), Gamma (RBF kernel width)
Interpretability			
Handling of Non- linearity			
Scalability			

Recap				
Aspect	Decision Trees	K-Nearest Neighbors (KNN)	Support Vector Machines (SVM) with RBF Kernel	
Sensitivity to Outliers				
Memory Usage				
Training Time				
Prediction Time				
Multiclass support				

(iClicker) Exercise 5.1

iClicker cloud join link: https://join.iclicker.com/YJHS

Take a guess: In your machine learning project, how much time will you typically spend on data preparation and transformation?

- a. ~80% of the project time
- b. ~20% of the project time
- c. ~50% of the project time
- d. None. Most of the time will be spent on model building

The question is adapted from here.

(iClicker) Exercise 5.2

iClicker cloud join link: https://join.iclicker.com/YJHS

Select all of the following statements which are TRUE.

- a. StandardScaler ensures a fixed range (i.e., minimum and maximum values) for the features.
- b. StandardScaler calculates mean and standard deviation for each feature separately.
- c. In general, it's a good idea to apply scaling on numeric features before training k-NN or SVM RBF models.
- d. The transformed feature values might be hard to interpret for humans.
- e. After applying SimpleImputer The transformed data has a different shape than the original data.

(iClicker) Exercise 5.3

iClicker cloud join link: https://join.iclicker.com/YJHS

Select all of the following statements which are TRUE.

- a. You can have scaling of numeric features, one-hot encoding of categorical features, and scikit-learn estimator within a single pipeline.
- b. Once you have a scikit-learn pipeline object with an estimator as the last step, you can call fit, predict, and score on it.
- c. You can carry out data splitting within scikit-learn pipeline.
- d. We have to be careful of the order we put each transformation and model in a pipeline.
- e. If you call cross_validate with a pipeline object, it will call fit and transform on the training fold and only transform on the validation fold.

Let's take a break!

/

Preprocessing motivation: example

You're trying to find a suitable date based on:

- Age (closer to yours is better).
- Number of Facebook Friends (closer to your social circle is ideal).

11

Preprocessing motivation: example

• You are 30 years old and have 250 Facebook friends.

Person	Age	#FB Friends	Euclidean Distance Calculation	Distance
A	25	400	$\sqrt{(5^2 + 150^2)}$	150.08
В	27	300	$\sqrt{(3^2 + 50^2)}$	50.09
С	30	500	$\sqrt{(0^2 + 250^2)}$	250.00
D	60	250	$\sqrt{(30^2 + 0^2)}$	30.00

Based on the distances, the two nearest neighbors (2-NN) are:

- Person D (Distance: 30.00)
- Person B (Distance: 50.09)

What's the problem here?

Common transformations

13

Imputation: Fill the gaps! (

Fill in missing data using a chosen strategy:

- Mean: Replace missing values with the average of the available data.
- Median: Use the middle value.
- Most Frequent: Use the most common value (mode).
- KNN Imputation: Fill based on similar neighbors.

Example:

Fill in missing values like filling empty seats in a classroom with the average student.

- 1 from sklearn.impute import SimpleImputer
- 2 imputer = SimpleImputer(strategy='mean')
- 3 X_imputed = imputer.fit_transform(X)

Scaling: Everything to the same range! (\[>\] \[>\])

Ensure all features have a comparable range.

- **StandardScaler**: Mean = 0, Standard Deviation = 1.
- MinMaxScaler: Scales features to a [0, 1] range.
- **RobustScaler**: Scales features using median and quantiles.

Example:

Rescaling everyone's height to make basketball players and gymnasts comparable.

- 1 from sklearn.preprocessing import StandardScaler
- 2 scaler = StandardScaler()
- 3 X_scaled = scaler.fit_transform(X)

One-Hot encoding: \checkmark \rightarrow 1 0 0

Convert categorical features into binary columns.

- Creates new binary columns for each category.
- Useful for handling categorical data in machine learning models.

Example:

Turn "Apple, Banana, Orange" into binary columns:

Fruit		4	6
Apple 🍎	1	0	0
Banana 🔖	0	1	0
Orange 🅌	0	0	1

- 1 from sklearn.preprocessing import OneHotEncoder
- 2 encoder = OneHotEncoder()
- 3 X_encoded = encoder.fit_transform(X)

Ordinal encoding: Ranking matters! $(\rightarrow 1)$

Convert categories into integer values that have a meaningful order.

- Assign integers based on order or rank.
- Useful when there is an inherent ranking in the data.

Example:

Turn "Poor, Average, Good" into 1, 2, 3:

Rating	Ordinal
Poor	1
Average	2
Good	3

- 1 from sklearn.preprocessing import OrdinalEncoder
- 2 encoder = OrdinalEncoder()
- 3 X_ordinal = encoder.fit_transform(X)

sklearn Transformers vs Estimators

Transformers

- Are used to transform or preprocess data.
- Implement the fit and transform methods.
 - fit(X): Learns parameters from the data.
 - transform(X): Applies the learned transformation to the data.
- Examples:
 - Imputation (SimpleImputer): Fills missing values.
 - **Scaling** (StandardScaler): Standardizes features.

Estimators

- Used to make predictions.
- Implement fit and predict methods.
 - fit(X, y): Learns from labeled data.
 - predict(X): Makes predictions on new data.
- Examples: DecisionTreeClassifier, SVC, KNeighborsClassifier

¹ from sklearn.tree import DecisionTreeClassifier

² tree_clf = DecisionTreeClassifier()

The golden rule in feature transformations

- Never transform the entire dataset at once!
- Why? It leads to data leakage using information from the test set in your training process, which can artificially inflate model performance.
- Fit transformers like scalers and imputers on the training set only.
- Apply the transformations to both the training and test sets separately.

Example:

- 1 from sklearn.preprocessing import StandardScaler
- 2 scaler = StandardScaler()
- 3 X_train_scaled = scaler.fit_transform(X_train)
- 4 X_test_scaled = scaler.transform(X_test)

sklearn Pipelines

- Pipeline is a way to chain multiple steps (e.g., preprocessing + model fitting) into a single workflow.
- Simplify the code and improves readability.
- Reduce the risk of data leakage by ensuring proper transformation of the training and test sets.
- Automatically apply transformations in sequence.

Example:

Chaining a StandardScaler with a KNeighborsClassifier model.

```
1 from sklearn.pipeline import make_pipeline
2 from sklearn.preprocessing import StandardScaler
3 from sklearn.neighbors import KNeighborsClassifier
4 5 pipeline = make_pipeline(StandardScaler(), KNeighborsClassifier())
6 7 pipeline.fit(X_train, y_train)
8 y_pred = pipeline.predict(X_test)
```

See you next class!