
Lecture 5:
Preprocessing and
sklearn pipelines

Firas Moosvi (Slides adapted from Varada Kolhatkar)

1

Announcements

2

Recap
Decision trees: Split data into subsets based on feature values to create decision rules

-NNs: Classify based on the majority vote from k nearest neighbors

SVM RBFs: Create a boundary using an RBF kernel to separate classes

𝑘

3

Synthesizing existing
knowledge

4

Recap
Aspect Decision

Trees
K-Nearest
Neighbors
(KNN)

Support Vector Machines
(SVM) with RBF Kernel

Main
hyperparameters

Max depth, min
samples split

Number of
neighbors ()

C (regularization), Gamma
(RBF kernel width)

Interpretability

Handling of Non-
linearity

Scalability

𝑘

5

Recap
Aspect Decision Trees K-Nearest

Neighbors (KNN)
Support Vector
Machines (SVM)
with RBF Kernel

Sensitivity
to Outliers

Memory
Usage

Training
Time

Prediction
Time

Multiclass
support

6

(iClicker) Exercise 5.1
iClicker cloud join link: https://join.iclicker.com/YJHS

Take a guess: In your machine learning project, how much time will you typically spend
on data preparation and transformation?

a. ~80% of the project time

b. ~20% of the project time

c. ~50% of the project time

d. None. Most of the time will be spent on model building

The question is adapted from .here

7

https://developers.google.com/machine-learning/crash-course/numerical-data

(iClicker) Exercise 5.2
iClicker cloud join link: https://join.iclicker.com/YJHS

Select all of the following statements which are TRUE.

a. StandardScaler ensures a fixed range (i.e., minimum and maximum values) for the
features.

b. StandardScaler calculates mean and standard deviation for each feature
separately.

c. In general, it’s a good idea to apply scaling on numeric features before training -
NN or SVM RBF models.

d. The transformed feature values might be hard to interpret for humans.

e. After applying SimpleImputer The transformed data has a different shape than the
original data.

𝑘

8

(iClicker) Exercise 5.3
iClicker cloud join link: https://join.iclicker.com/YJHS

Select all of the following statements which are TRUE.

a. You can have scaling of numeric features, one-hot encoding of categorical
features, and scikit-learn estimator within a single pipeline.

b. Once you have a scikit-learn pipeline object with an estimator as the last step, you
can call fit, predict, and score on it.

c. You can carry out data splitting within scikit-learn pipeline.

d. We have to be careful of the order we put each transformation and model in a
pipeline.

e. If you call cross_validate with a pipeline object, it will call fit and transform on
the training fold and only transform on the validation fold.

9

Break
Let’s take a break!

 /

10

Preprocessing motivation: example
You’re trying to find a suitable date based on:

Age (closer to yours is better).

Number of Facebook Friends (closer to your social circle is ideal).

11

Preprocessing motivation: example
You are 30 years old and have 250 Facebook friends.

Person Age #FB Friends Euclidean Distance Calculation Distance

A 25 400 √(5² + 150²) 150.08

B 27 300 √(3² + 50²) 50.09

C 30 500 √(0² + 250²) 250.00

D 60 250 √(30² + 0²) 30.00

Based on the distances, the two nearest neighbors (2-NN) are:

Person D (Distance: 30.00)

Person B (Distance: 50.09)

What’s the problem here?

12

Common
transformations

13

Imputation: Fill the gaps! (🟩 🟧 🟦)
Fill in missing data using a chosen strategy:

Mean: Replace missing values with the average of the available data.

Median: Use the middle value.

Most Frequent: Use the most common value (mode).

KNN Imputation: Fill based on similar neighbors.

Example:
Fill in missing values like filling empty seats in a classroom with the average student.

from sklearn.impute import SimpleImputer1
imputer = SimpleImputer(strategy='mean')2
X_imputed = imputer.fit_transform(X)3

14

Scaling: Everything to the same
range! (📉 📈)
Ensure all features have a comparable range.

StandardScaler: Mean = 0, Standard Deviation = 1.

MinMaxScaler: Scales features to a [0, 1] range.

RobustScaler: Scales features using median and quantiles.

Example:
Rescaling everyone’s height to make basketball players and gymnasts comparable.

from sklearn.preprocessing import StandardScaler1
scaler = StandardScaler()2
X_scaled = scaler.fit_transform(X)3

15

One-Hot encoding: 🍎 → 1️⃣ 0️⃣ 0️⃣
Convert categorical features into binary columns.

Creates new binary columns for each category.

Useful for handling categorical data in machine learning models.

Example:
Turn “Apple, Banana, Orange” into binary columns:

Fruit 🍎 🍌 🍊

Apple 🍎 1 0 0

Banana 🍌 0 1 0

Orange 🍊 0 0 1
from sklearn.preprocessing import OneHotEncoder1
encoder = OneHotEncoder()2
X_encoded = encoder.fit_transform(X)3

16

Ordinal encoding: Ranking matters!
(⭐️⭐️⭐️⭐️⭐️ → 1️⃣)
Convert categories into integer values that have a meaningful order.

Assign integers based on order or rank.

Useful when there is an inherent ranking in the data.

Example:
Turn “Poor, Average, Good” into 1, 2, 3:

Rating Ordinal

Poor 1

Average 2

Good 3
from sklearn.preprocessing import OrdinalEncoder1
encoder = OrdinalEncoder()2
X_ordinal = encoder.fit_transform(X)3

17

sklearn Transformers
vs Estimators

18

Transformers
Are used to transform or preprocess data.

Implement the fit and transform methods.

fit(X): Learns parameters from the data.

transform(X): Applies the learned transformation to the data.

Examples:

Imputation (SimpleImputer): Fills missing values.

Scaling (StandardScaler): Standardizes features.

19

Estimators
Used to make predictions.

Implement fit and predict methods.

fit(X, y): Learns from labeled data.

predict(X): Makes predictions on new data.

Examples: DecisionTreeClassifier, SVC, KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier1
tree_clf = DecisionTreeClassifier()2

20

The golden rule in feature
transformations

Never transform the entire dataset at once!

Why? It leads to data leakage — using information from the test set in your training
process, which can artificially inflate model performance.

Fit transformers like scalers and imputers on the training set only.

Apply the transformations to both the training and test sets separately.

Example:
from sklearn.preprocessing import StandardScaler1
scaler = StandardScaler()2
X_train_scaled = scaler.fit_transform(X_train)3
X_test_scaled = scaler.transform(X_test)4

21

sklearn Pipelines
Pipeline is a way to chain multiple steps (e.g., preprocessing + model fitting) into a
single workflow.

Simplify the code and improves readability.

Reduce the risk of data leakage by ensuring proper transformation of the training and
test sets.

Automatically apply transformations in sequence.

Example:
Chaining a StandardScaler with a KNeighborsClassifier model.

from sklearn.pipeline import make_pipeline1
from sklearn.preprocessing import StandardScaler2
from sklearn.neighbors import KNeighborsClassifier3

4
pipeline = make_pipeline(StandardScaler(), KNeighborsClassifier())5

6
pipeline.fit(X_train, y_train)7
y_pred = pipeline.predict(X_test)8

22

See you next class!

23

