
CPSC 330 Lecture 18:
Introduction to deep
learning and computer

vision
Firas Moosvi

1

Announcements
Final Exam reservations for the CBTF will open on June 16th at 10 AM

Reminder that final Exam window for CPSC 330 will be June 23 and June 24th

HW7 is due June 14th at 10 PM

HW8 has been released (due June 16th at 10 PM)

HW9 has also been released (due June 18th at 10 PM)

We’re almost at the end of term! Hang in there 😊!

2

iClicker 18.1 (Recap)
iClicker cloud join link: https://join.iclicker.com/YJHS

Select all of the following statements which are TRUE.

a. It’s possible to use word2vec embedding representations for text classification
instead of bag-of-words representation.

b. The topic model approach we used in the last lecture, Latent Dirichlet Allocation
(LDA), is an unsupervised approach.

c. In an LDA topic model, the same word can be associated with two different topics
with high probability.

d. In an LDA topic model, a document is a mixture of multiple topics.

e. If I train a topic model on a large collection of news articles with K = 10, I would get
10 topic labels (e.g., sports, culture, politics, finance) as output.

3

Multiclass classification
So far we have been talking about binary classification

Can we use these classifiers when there are more than two classes?

, for example, has 1000 classes

Can we use decision trees or KNNs for multi-class classification?

What about logistic regression?

“ImageNet” computer vision competition

4

http://www.image-net.org/challenges/LSVRC/

Multinomial logistic
regression

5

Softmax Function for Probabilities
Given an input, the probability that it belongs to class is calculated
using the softmax function:

 is the example

 is the weight vector for class .

 is the bias term for class .

 is the total number of classes.

𝑗 ∈ {1, 2,… ,𝐾}

𝑃 (𝑦 = 𝑗 ∣) =𝑥𝑖
𝑒

+𝑤⊤𝑗 𝑥𝑖 𝑏𝑗

∑ 𝐾
𝑘=1 𝑒 +𝑤⊤𝑘 𝑥𝑖 𝑏𝑘

𝑥𝑖 𝑖𝑡ℎ

𝑤𝑗 𝑗

𝑏𝑗 𝑗

𝐾

6

Making Predictions
1. Compute Probabilities:

For each class , compute the probability using the softmax function.

2. Select the Class with the Highest Probability:
The predicted class () is:

𝑗 𝑃 (𝑦 = 𝑗 ∣)𝑥𝑖

= arg 𝑃 (𝑦 = 𝑗 ∣)𝑦 ̂ max𝑗∈{1,…,𝐾} 𝑥𝑖

7

Binary vs multinomial logistic
regression

Aspect Binary Logistic Regression Multinomial Logistic
Regression

Target variable 2 classes (binary) More than 2 classes (multi-
class)

Getting
probabilities

Sigmoid Softmax

parameters weights, one per feature and the
bias term

 weights and a bias term
per class

Output Single probability Probability distribution over
classes

Use case Binary classification (e.g., spam
detection)

Multi-class classification
(e.g., image classification)

𝑑 𝑑

8

Image classification

Have you used search in Google Photos? You can search for “my photos of cat” and it
will retrieve photos from your libraries containing cats. This can be done using image
classification, which is treated as a supervised learning problem, where we define a set
of target classes (objects to identify in images), and train a model to recognize them
using labeled example photos.

9

Image classification

Image classification is not an easy problem because of the variations in the location of
the object, lighting, background, camera angle, camera focus etc.

10

Neural networks

Neural networks are perfect for these types of problems where local structures are
important.

A significant advancement in image classification was the application of
convolutional neural networks (ConvNets or CNNs) to this problem.

Achieved a winning test error rate of 15.3%, compared to 26.2% achieved by the
second-best entry in the ILSVRC-2012 competition.

Let’s go over the basics of a neural network.

ImageNet Classification with Deep Convolutional Neural Networks

11

https://dl.acm.org/doi/10.1145/3065386

Introduction to neural networks

Neural networks can be viewed a generalization of linear models where we apply a
series of transformations.

Here is graphical representation of a logistic regression model.

We have 4 features: x[0], x[1], x[2], x[3]

inputs

output

x[0]

y

w[0]

x[1] w[1]

x[2]

w[2]

x[3]

w[3]

12

Adding a layer of transformations
13

One more layer of transformations

Now we are adding one more layer of transformations.

inputs

hidden layer 1 hidden layer 2

output

x[0]

h1[0]

h1[1]

h1[2]

x[1]

x[2]

x[3]

h2[0]

h2[1]

h2[2] y

14

Neural networks

With a neural net, you specify the number of features after each transformation.

In the above, it goes from 4 to 3 to 3 to 1.

To make them really powerful compared to the linear models, we apply a non-linear
function to the weighted sum for each hidden node.

Neural network = neural net

Deep learning ~ using neural networks

15

Understanding Convolutional Neural
Networks intuitively
Link to video

16

https://youtu.be/oGvHtpJMO3M?feature=shared&t=326

Highly (highly) recommend this
video!

17

Why neural networks?

They can learn very complex functions.

The fundamental tradeoff is primarily controlled by the number of layers and
layer sizes.

More layers / bigger layers –> more complex model.

You can generally get a model that will not underfit.

They work really well for structured data:

1D sequence, e.g. timeseries, language

2D image

3D image or video

They’ve had some incredible successes in the last 12 years.

Transfer learning (coming later today) is really useful.

18

Why not neural networks?

Often they require a lot of data.

They require a lot of compute time, and, to be faster, specialized hardware called
.

They have huge numbers of hyperparameters

Think of each layer having hyperparameters, plus some overall hyperparameters.

Being slow compounds this problem.

They are not interpretable.

I don’t recommend training them on your own without further training

Good news

You don’t have to train your models from scratch in order to use them.

I’ll show you some ways to use neural networks without training them yourselves.

GPUs

19

https://en.wikipedia.org/wiki/Graphics_processing_unit

Deep learning software

The current big players are:

1.

2.

Both are heavily used in industry. If interested, see
.

PyTorch

TensorFlow

comparison of deep learning
software

20

http://pytorch.org/
https://www.tensorflow.org/
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

Introduction to computer vision

 refers to understanding images/videos, usually using ML/AI.

In the last decade this field has been dominated by deep learning. We will explore
image classification and object detection.

Computer vision

21

https://en.wikipedia.org/wiki/Computer_vision

Introduction to computer vision

image classification: is this a cat or a dog?

object localization: where is the cat in this image?

object detection: What are the various objects in the image?

instance segmentation: What are the shapes of these various objects in the image?

and much more…

22

Pre-trained models

In practice, very few people train an entire CNN from scratch because it requires a
large dataset, powerful computers, and a huge amount of human effort to train the
model.

Instead, a common practice is to download a pre-trained model and fine tune it for
your task. This is called transfer learning.

Transfer learning is one of the most common techniques used in the context of
computer vision and natural language processing.

It refers to using a model already trained on one task as a starting point for learning to
perform another task.

23

Pre-trained models out-of-the-box

Let’s first apply one of these pre-trained models to our own problem right out of the
box.

24

Pre-trained models out-of-the-box

We can easily download famous models using the torchvision.models module. All
models are available with pre-trained weights (based on ImageNet’s 224 x 224
images)

We used a pre-trained model vgg16 which is trained on the ImageNet data.

We preprocess the given image.

We get prediction from this pre-trained model on a given image along with prediction
probabilities.

For a given image, this model will spit out one of the 1000 classes from ImageNet.

25

Pre-trained models out-of-the-box
Let’s predict labels with associated probabilities for unseen images

Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to
/home/runner/.cache/torch/hub/checkpoints/vgg16-397923af.pth

26

Pre-trained models out-of-the-box

We got these predictions without “doing the ML ourselves”.

We are using pre-trained vgg16 model which is available in torchvision.

torchvision has many such pre-trained models available that have been very
successful across a wide range of tasks: AlexNet, VGG, ResNet, Inception,
MobileNet, etc.

Many of these models have been pre-trained on famous datasets like ImageNet.

So if we use them out-of-the-box, they will give us one of the ImageNet classes as
classification.

27

Pre-trained models out-of-the-box

Let’s try some images which are unlikely to be there in ImageNet.

It’s not doing very well here because ImageNet doesn’t have proper classes for these
images.

28

Pre-trained models out-of-the-box

Here we are Pre-trained models out-of-the-box.

Can we use pre-trained models for our own classification problem with our classes?

Yes!! We have two options here:

1. Add some extra layers to the pre-trained network to suit our particular task

2. Pass training data through the network and save the output to use as features for
training some other model

29

Pre-trained models to extract
features

30

Pre-trained models to extract
features

Once we extract these feature vectors for all images in our training data, we can train
a machine learning classifier such as logistic regression or random forest.

This classifier will be trained on our classes using feature representations extracted
from the pre-trained models.

Let’s try this out.

It’s better to train such models with GPU. Since our dataset is quite small, we won’t
have problems running it on a CPU.

31

Pre-trained models to extract
features

Let’s look at some sample images in the dataset.

32

Dataset statistics

Here is the stat of our toy dataset.
Classes: ['beet_salad', 'chocolate_cake', 'edamame', 'french_fries', 'pizza', 'spring_rolls', 'sushi']
Class count: 40, 38, 40
Samples: 283
First sample: ('data/food/train/beet_salad/104294.jpg', 0)

33

Pre-trained models to extract
features

Now for each image in our dataset, we’ll extract a feature vector from a pre-trained
model called densenet121, which is trained on the ImageNet dataset.

Downloading: "https://download.pytorch.org/models/densenet121-a639ec97.pth" to
/home/runner/.cache/torch/hub/checkpoints/densenet121-a639ec97.pth

34

Shape of the feature vector

Now we have extracted feature vectors for all examples. What’s the shape of these
features?

The size of each feature vector is 1024 because the size of the last layer in densenet
architecture is 1024.

torch.Size([283, 1024])

Source

35

https://towardsdatascience.com/understanding-and-visualizing-densenets-7f688092391a

A feature vector given by densenet

Let’s examine the feature vectors.

0 1 2 3 4 5

0 0.000594 0.005223 0.002873 0.001198 0.095008 0.586996 0.000

1 0.000409 0.002568 0.005813 0.000984 0.144840 0.398514 0.000

2 0.000416 0.001159 0.003767 0.003172 0.108386 0.586645 0.000

3 0.000497 0.005999 0.002178 0.002357 0.148310 0.246634 0.001

4 0.000736 0.004440 0.005242 0.002650 0.117544 0.587100 0.000

5 rows × 1024 columns

The features are hard to interpret but they have some important information about the
images which can be useful for classification.

36

Logistic regression with the
extracted features

Let’s try out logistic regression on these extracted features.

This is great accuracy for so little data and little effort!!!

Training score: 1.0

Validation score: 0.8208955223880597

37

Sample predictions

Let’s examine some sample predictions on the validation set.

38

Object detection

Another useful task and tool to know is object detection using YOLO model.

Let’s identify objects in a sample image using a pretrained model called YOLO8.

List the objects present in this image.

39

Object detection using

Let’s try this out using a pre-trained model.

YOLO

from ultralytics import YOLO1
model = YOLO("yolov8n.pt") # pretrained YOLOv8n model2

3
yolo_input = "data/yolo_test/3356700488_183566145b.jpg"4
yolo_result = "data/yolo_result.jpg"5
Run batched inference on a list of images6
result = model(yolo_input) # return a list of Results objects7
result[0].save(filename=yolo_result)8

Creating new Ultralytics Settings v0.0.6 file ✅
View Ultralytics Settings with 'yolo settings' or at '/home/runner/.config/Ultralytics/settings.json'
Update Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. For help see
https://docs.ultralytics.com/quickstart/#ultralytics-settings.

image 1/1 /home/runner/work/cpsc330-slides/cpsc330-slides/website/data/yolo_test/3356700488_183566145b.jpg:
512x640 4 persons, 2 cars, 1 stop sign, 88.5ms
Speed: 1.3ms preprocess, 88.5ms inference, 1.1ms postprocess per image at shape (1, 3, 512, 640)

'data/yolo_result.jpg'

40

https://docs.ultralytics.com/

Object detection output

41

Summary

Neural networks are a flexible class of models.

They are particular powerful for structured input like images, videos, audio, etc.

They can be challenging to train and often require significant computational
resources.

The good news is we can use pre-trained neural networks.

This saves us a huge amount of time/cost/effort/resources.

We can use these pre-trained networks directly or use them as feature
transformers.

42

