CPSC 330 Lecture 8: Hyperparameter Optimization

Firas Moosvi (Slides adapted from Varada Kolhatkar)

Recap: Logistic regression

- A linear model used for binary classification tasks.
 - There is a variant of logistic regression called multinomial logistic regression for multiclass classification.
- Parameters:
 - Coefficients (Weights): The model learns a coefficient or a weight associated with each feature that represents its importance.
 - Bias (Intercept): A constant term added to the linear combination of features and their coefficients.

Recap: Logistic regression

- The model computes a weighted sum of the input features' values, adjusted by their respective coefficients and the bias term.
- This weighted sum is passed through a sigmoid function to transform it into a probability score, indicating the likelihood of the input belonging to the "positive" class.

$$P_{hat} = \sigma\left(\sum_{i=1}^d w_i x_i + b\right)$$

- P_{hat} is the predicted probability of the example belonging to the positive class.
- w_i is the learned weight associated with feature i
- x_i is the value of the input feature i
- *b* is the bias term

Recap: Logistic regression

- For a dataset with d features, the decision boundary that separates the classes is a d-1 dimensional hyperplane.
- Complexity hyperparameter: C in sklearn.
 - Higher $C \rightarrow$ more complex model meaning larger coefficients
 - Lower $C \rightarrow$ less complex model meaning smaller coefficients

Recap: CountVectorizer input

- Primarily designed to accept either a pandas. Series of text data or a 1D numpy array. It can also process a list of string data directly.
- Unlike many transformers that handle multiple features (DataFrame or 2D numpy array), CountVectorizer a single text column at a time.
- If your dataset contains multiple text columns, you will need to instantiate separate CountVectorizer objects for each text feature.
- This approach ensures that the unique vocabulary and tokenization processes are correctly applied to each specific text column without interference.

Hyperparameter optimization motivation

7

Data

1 sms_df = pd.read_csv(DATA_DIR + "spam.csv", encoding="latin-1")
2 sms_df = sms_df.drop(columns = ["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"])
3 sms_df = sms_df.rename(columns={"v1": "target", "v2": "sms"})
4 train_df, test_df = train_test_split(sms_df, test_size=0.10, random_state=42)
5 X_train, y_train = train_df["sms"], train_df["target"]
6 X_test, y_test = test_df["sms"], test_df["target"]
7 train_df.head(4)

target

sms

3130	spam	LookAtMe!: Thanks for your purchase of a video
106	ham	Aight, I'll hit you up when I get some cash
4697	ham	Don no da:)whats you plan?
856	ham	Going to take your babe out ?

Model building

• Let's define a pipeline

```
1 pipe_svm = make_pipeline(CountVectorizer(), SVC())
```

• Suppose we want to try out different hyperparameter values.

```
1 parameters = {
2     "max_features": [100, 200, 400],
3     "gamma": [0.01, 0.1, 1.0],
4     "C": [0.01, 0.1, 1.0],
5 }
```

Hyperparameter optimization with loops

- Define a parameter space.
- Iterate through possible combinations.
- Evaluate model performance.
- What are some limitations of this approach?

sklearn methods

- sklearn provides two main methods for hyperparameter optimization
 - Grid Search
 - Random Search

Grid Search

- Covers all possible combinations from the provided grid.
- Can be parallelized easily.
- Integrates cross-validation.

Grid search example

```
1 from sklearn.model_selection import GridSearchCV
 2
   pipe_svm = make_pipeline(CountVectorizer(), SVC())
 3
 4
   param_grid = {
 5
       "countvectorizer__max_features": [100, 200, 400],
 6
       "svc gamma": [0.01, 0.1, 1.0],
 7
       "svc_C": [0.01, 0.1, 1.0],
 8
 9
   }
   grid_search = GridSearchCV(pipe_svm,
10
11
                      param_grid = param_grid,
12
                      n_jobs=-1,
13
                      return_train_score=True
14
   grid_search.fit(X_train, y_train)
15
   grid_search.best_score_
16
```

np.float64(0.9782606272997375)

Random Search

- More efficient than grid search when dealing with large hyperparameter spaces.
- Samples a given number of parameter settings from distributions.

Important parameter

Random search example

```
1 from sklearn.model selection import RandomizedSearchCV
2 from scipy.stats import randint
 3
   pipe_svc = make_pipeline(CountVectorizer(), SVC())
 4
 5
   param dist = {
 6
       "countvectorizer__max_features": randint(100, 2000),
 7
       "svc C": uniform(0.1, 1e4), # loguniform(1e-3, 1e3),
 8
       "svc gamma": loguniform(1e-5, 1e3),
 9
10 }
   random_search = RandomizedSearchCV(pipe_svm,
11
                      param_distributions = param_dist,
12
13
                     n_iter=10,
14
                     n_jobs=-1,
15
                     return_train_score=True)
16
17 # Carry out the search
   random search.fit(X_train, y_train)
18
   random search.best score
19
```

np.float64(0.9820500574125927)

Optimization bias

• Why do we need separate validation and test datasets?

Mitigating optimization bias.

- Cross-validation
- Ensembles
- Regularization and choosing a simpler model

(iClicker) Exercise 8.1

iClicker cloud join link: https://join.iclicker.com/YJHS

Select all of the following statements which are TRUE.

- a. If you get best results at the edges of your parameter grid, it might be a good idea to adjust the range of values in your parameter grid.
- b. Grid search is guaranteed to find the best hyperparameter values.
- c. It is possible to get different hyperparameters in different runs of RandomizedSearchCV.

Questions for you

- You have a dataset and you give me 1/10th of it. The dataset given to me is rather small and so I split it into 96% train and 4% validation split. I carry out hyperparameter optimization using a single 4% validation split and report validation accuracy of 0.97. Would it classify the rest of the data with similar accuracy?
 - Probably
 - Probably not

Questions for class discussion

- Suppose you have 10 hyperparameters, each with 4 possible values. If you run
 GridSearchCV with this parameter grid, how many experiments will be carried out?
- Suppose you have 10 hyperparameters and each takes 4 values. If you run RandomizedSearchCV with this parameter grid with n_iter=20, how many crossvalidation experiments will be carried out?

Group Work: Class Demo & Live Coding

For this demo, each student should click this link to create a new repo in their accounts, then clone that repo locally to follow along with the demo from today.

Looking Ahead

22

Group Work: Invention Activity

So far we have looked only at score as a metric for evaluating our metrics.

What else could be used as a possible metric? Think of what else might be important for machine learning practioners and stakeholders?

In your group, brainstorm 4 alternative options:

- •
- •
- •