
Programming, 
Problem Solving, 
and Algorithms

CPSC 203, 2024 W2 
(January – April 2025)

Ian M. Mitchell
Lecture 14A



Traveling Salesperson Wrap-up
• TSP is a canonical example of an “NP-complete” problem

• We suspect (but have not proved) that problems in NP require exponential 
time to solve exactly (at least on traditional computers)

• The “complete” part refers to the fact that we have ways of converting this 
problem into other NP-complete problems and vice-versa: Solving one would 
solve them all

• So if I can convert my problem into TSP then I am in trouble?
• Not necessarily: Maybe there is a way to convert it into a simpler problem
• Not necessarily: There are many approximation / heuristic algorithms that 

might do a decent job
• Not necessarily: Quantum computing might save you
• Not necessarily: You now have evidence that your boss needs lower 

expectations

2



We did what now?
• CPSC 203: Programming, Problem Solving, and Algorithms
• Calendar description: 

• Analysis of increasingly complex algorithmic problems, using a modern 
programming language and a variety of approaches.

• Problem decomposition and abstraction guide explorations of topics from 
applied algorithms.

• Examples: Voronoi Diagrams, Markov Chains, Bin Packing, and Graph Search.

• I hope that you learned three different types of things:
• High level concepts
• Abstract data types and algorithms
• Practical tools and techniques

3



Week 1: Introductions
• Topics:

• Teaching team and approach
• Course topic overview

• Concepts:
• Learn by doing
• Abstraction, simplicity, elegance
• Computational / resource complexity

• Abstract data types and algorithms:
• “Big-O” notation
• Representing numbers, colors

• Tools and techniques:
• Markdown
• Terminal
• PrairieLearn and other course tools

4



Week 2: Python Review
• Topics:

• Basic Python data types and programming constructs
• Concepts:

• Evaluation rules
• Mutable vs immutable (hashable) data and function side-effects

• Abstract data types and algorithms:
• Varieties of “arbitrary length” data types

• Tools and techniques:
• JupyterLab (in PL workspace)
• Simple data types (int, float, bool, str, None)
• Collection data types (list, tuple, dictionary, set, …) and indexing
• Exceptions
• (List) comprehensions

5



Week 3: Efficiency and Python Classes
• Topics:

• More Python review
• Abstracting and implementing the process of knitting washcloths

• Concepts:
• Classes combine data (“attributes”) with functions (“methods”)

• Abstract data types and algorithms:
• Classes containing classes

• Tools and techniques:
• VSCode (in PL workspace) text editor and environment
• Decorator “@dataclass” creates some default methods (including constructor)
• Python type hints (in function signatures and class definitions)
• PIL for creating images

6



Week 4: Classes and DataFrames
• Topics:

• Implementing knitting handcrafts with visualization
• Tabular data and Pandas DataFrames

• Concepts:
• Modifying existing data (such as flipping knitting blocks)
• Bugs from aliases and mutable data

• Abstract data types and algorithms:
• DataFrames: Creating, indexing, filtering, mapping, extracting, iterating

• Tools and techniques:
• Python copy.deepcopy() to avoid aliasing
• CSV files
• Pandas

7



Week 5: Web scraping
• Topics:

• Getting data from web pages

• Concepts:
• HTML as a format for web pages

• Abstract data types and algorithms:
• Looping over collections

• Tools and techniques:
• Parsing HTML with billboard and BeautifulSoup libraries
• Converting data from collection of objects into a DataFrame
• Plotting DataFrame information with matplotlib

8



Week 6: Version Control and Git
• Topics:

• Version control for managing code

• Concepts:
• Repositories, working copy, commits, branching, merging

• Abstract data types and algorithms:
• N/A

• Tools and techniques:
• Git
• GitHub

9



Week 7: Reading Week
• Deep breath in, hold, and then out…

10



Week 8: New Data Structures
• Topics:

• Moving beyond basic collection / series operations (select element, iterate 
over all to map, filter, reduce, …)

• Pointillistic painting

• Concepts:
• Voronoi diagram to partition a plane based on nearest center

• Abstract data types and algorithms:
• Images as grids

• Tools and techniques:
• Start using a locally installed tech stack
• PIL for manipulating photos

11



Week 9: Graphs
• Topics:

• Efficient implementation of Voronoi partition / image blobby images

• Concepts:
• Nodes and neighbors
• Breadth first search using a queue

• Abstract data types and algorithms:
• Queues: FIFO and LIFO (stacks)
• Graphs
• Breadth first search (BFS) iterative version

• Tools and techniques:
• Python deque to implement FIFO queue and BFS

12



Week 10: Catch-up week
• Woulda, shoulda, coulda…
• Take 10 minutes and fill out your course evaluation

13



Week 11: Mary had a little lamb
• Topics:

• Music generation

• Concepts:
• Markov chains
• State space of dynamic systems

• Abstract data types and algorithms:
• Markov chains as directed weighted graphs
• Graphs in adjacency matrix or adjacency list forms

• Tools and techniques:
• Extracting Markov chain probabilities from data sample(s)

14



Week 12: State spaces
• Topics:

• Sudoku
• Concepts:

• Representing a sudoku state
• Abstract data types and algorithms:

• Graphs of collections
• Depth first search (DFS) iterative version
• Dijkstra’s algorithm for shortest path
• Priority queue

• Tools and techniques:
• DFS and stacks using deque
• Priority queue using heapq

15



Week 13: Maps (the regular kind)
• Topics:

• Street maps

• Concepts:
• Representing geographic data in graph or tabular form

• Abstract data types and algorithms:
• TSP

• Tools and techniques:
• Extracting and graphing map features using OSMnx and GeoPandas
• Extracting and graphing a shortest path using NetworkX
• Constructing a TSP solver on a street map
• Solving TSP by brute force iteration over all permutations

16



Project 1: Spotify (if only)
• Topics:

• Download playlist and song data from Spotify

• Concepts:
• Use an API to directly access remote data

• Abstract data types and algorithms:
• Tabular data and DataFrames

• Tools and techniques:
• Spotipy library for Spotify’s web API
• Pandas
• matplotlib

17



Project 2: Cellular Automata
• Topics:

• Conway’s Game of Life and more general cellular automata

• Concepts:
• Systems with dynamic state
• Simple but implicitly defined graphs

• Abstract data types and algorithms:
• Render loop for animation

• Tools and techniques:
• Class constructors
• Simple game engine PyGame for dynamic graphics
• PIL for animated gifs

18



Project 3: Maps and Path Planning
• Topics:

• Planning a path through a downloaded streetmap
• Concepts:

• Geographical Information Systems (GIS)
• Abstract data types and algorithms:

• Graphs
• GeoDataFrames
• Depth first search (DFS)

• Tools and techniques:
• OSMnx for working with OpenStreetMap data
• GeoPandas for geophysical data manipulation and visualization
• NetworkX for graph algorithms
• Debugging somebody else’s code

19



To Summarize

• New abstract data types
• Tabular data
• Graphs
• Queues
• Cellular automata and Markov chains
• State spaces of dynamic systems

• Python data types
• Built-in: List, dictionary, set, tuple
• Other modules: deque, defaultdict, 

heapq
• Classes
• DataFrames
• Many representations of graphs

• Algorithms:
• Multi-dimensional iteration
• BFS, DFS, Dijkstra’s algorithm
• Traveling salesperson problem

• Tools & techniques
• Markdown
• Terminal
• VSCode
• Local tech stack and conda
• Git and GitHub
• JupyterLab and Jupyter notebooks
• Pandas, PIL, matplotlib and too many 

other Python libraries to mention

20



To Really Summarize
• Get the data representation right

• Once the data is in the correct form, solving the problem is usually easy (at 
least conceptually – execution time / memory may be an issue)

• A lot of your code will be transforming data from one representation to 
another

• Be careful that transformations do not (unintentionally) add, delete or corrupt 
the information that the data is representing

• Abstraction allows you to leverage the work of others
• Try to transform your data into a standard form (collection, table, graph, …)
• Try to transform your algorithm into a standard problem (map, filter, reduce, 

iteration, BFS, DFS, TSP, …)

• If you learn nothing else: Use version control!

21



Where to go from here?
• CPSC 203 is designed to be a terminal course for students who are not

pursuing a computer science major
• It contains a mixture of material from CPSC 121, 210 and 221

• There are numerous courses which you can take with CPSC 203
• CPSC 302 / 303 / 406: Numerical methods
• CPSC 330: Applied machine learning
• CPSC 368: Databases in data science
• DSCI 310: Reproducible and Trustworthy Workflows for Data Science
• DSCI 320: Visualization for Data Science

• Not programming courses, but worth serious consideration
• CPSC 430: Computers and Society
• DSCI 430: Fairness, Accountability, Transparency and Ethics (FATE) in Data Science

• Also: Data science minor and (new next fall) major

22



Where to go from here?
• Anywhere you want!

• You know Python, Jupyter 
Notebooks, the terminal, conda
VSCode, Git/GitHub, …

• You have a local development stack 
on your own machine 

• https://xkcd.com/353
• import matplotlib.pyplot.xkcd

23

https://xkcd.com/353
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xkcd.html

	Programming, Problem Solving, and Algorithms
	Traveling Salesperson Wrap-up
	We did what now?
	Week 1: Introductions
	Week 2: Python Review
	Week 3: Efficiency and Python Classes
	Week 4: Classes and DataFrames
	Week 5: Web scraping
	Week 6: Version Control and Git
	Week 7: Reading Week
	Week 8: New Data Structures
	Week 9: Graphs
	Week 10: Catch-up week
	Week 11: Mary had a little lamb
	Week 12: State spaces
	Week 13: Maps (the regular kind)
	Project 1: Spotify (if only)
	Project 2: Cellular Automata
	Project 3: Maps and Path Planning
	To Summarize
	To Really Summarize
	Where to go from here?
	Where to go from here?

