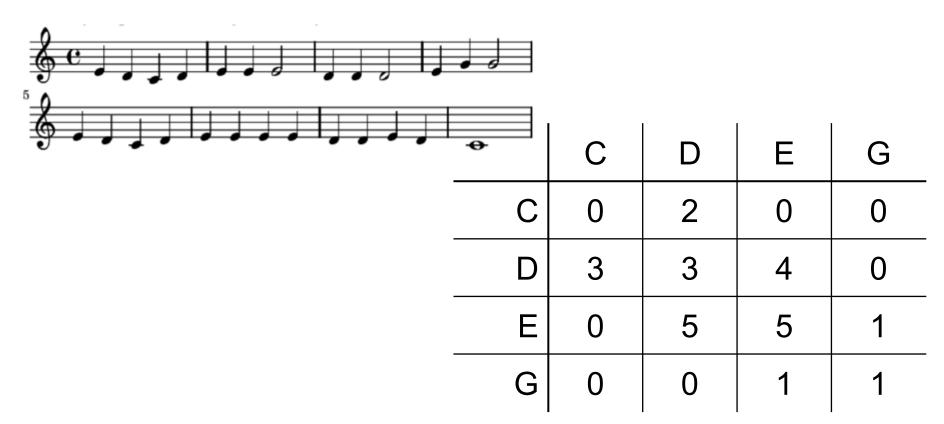
Programming, Problem Solving, and Algorithms

CPSC 203, 2024 W2 (January – April 2025) Ian M. Mitchell Lecture 11A

Slides from the Assigned Video

Following Ada

Supposing, for instance, that the fundamental relations of pitched **sounds** in the science of harmony and of musical composition were **susceptible of such expression** and adaptations,


the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent.

(Ada Lovelace -- 1842)

Prelude

Characterizing Mary

Building a Music Generator

	С	D	Е	G		С	D	Ш	G
С	0	2	0	0	С	0	1.0	0	0
D	3	3	4	0	D	0.3	0.3	0.4	0
Е	0	5	5	1	Е	0	0.45	0.45	0.1
G	0	0	1	1	G	0	0	0.5	0.5

Building a Song

- 1. Randomly choose a start note and put it in a list
- 2. for 25 notes, in the rhythm of MHaLL
 - a. Generate a new note
 - b. Put the new note in the list
- 3. play the list of notes

	С	D	E	G
О	0	1.0	0	0
D	0.3	0.3	0.4	0
Е	0	0.45	0.45	0.1
G	0	0	0.5	0.5

Building a Song

- 1. Randomly choose a start note and put it in a list
- 2. for 25 notes, in the rhythm of MHaLL
 - a. Generate a new note
 - b. Put the new note in the list
- 3. play the list of notes

	С	D	E	G
С	0	1.0	0	0
D	0.3	0.3	0.4	0
Е	0	0.45	0.45	0.1
G	0	0	0.5	0.5

The Technical Details

You have just learned about a particular type of random process called a *Markov Chain*.

https://brilliant.org/wiki/markov-chains/

We modelled it using a *transition table*, or a *finite state machine*, and we used it as the basis for an algorithm to generate music.

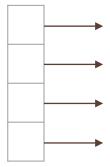
Graphs?

	С	D	E	G	
О	0	1.0	0	0	
D	0.3	0.3	0.4	0	
E	0	0.45	0.45	0.1	
G	0	0	0.5	0.5	

This table can be interpreted as an *adjacency matrix* representation of a graph.

Vertices:

Edges:


Special characteristics:

What does it look like? https://setosa.io/markov/

Graphs Representation

	С	D	E	G
С	0	1.0	0	0
D	0.3	0.3	0.4	0
E	0	0.45	0.45	0.1
G	0	0	0.5	0.5

A graph can also be represented using an adjacency list

Other Applications

PageRank: Google's first search algorithm

Some pages are likely to "follow" (be linked from) others.

Rank of page is based on the probability that you'll be there at any moment

Natural Language Processing

Some words are more likely to follow others.

"I just ate the whole desert" probably has a misspelling.

"For dinner I ___ ... " next word is probably "ate"

DNA matching

Chemical reaction simulation

Many others...