Programming, Problem Solving, and Algorithms

CPSC 203, 2024 W2 (January – April 2025) Ian M. Mitchell Lecture 08

Announcements

- Course web page: <u>https://ubc-cs.github.io/cpsc203/</u>
 - Weeks 1 3 are updated, week 4 is underway.
- Starting this week: Pre-lecture videos
 - I dropped the new videos for today's lecture (watch them for next Tuesday).
- Assessments:
 - Lab 3 (data classes) done.
 - POTW 3 & 4 due next Sunday
 - Test 2 in CBTF today Monday
 - Book for test 3 now!
- Tech stack: If at first you don't succeed... ask for help.

CPSC 203 weekly schedule

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Lectures	videos	12:30 – 14:00	videos	12:30 – 14:00			
Labs	Noon – 13:30 16:00 – 17:00	14:30 – 17:00 17:00 – 20:00		Due @noon	Look over the lab		
POTW	Five problems, five days						Due @noon
Tests in CBTF (~bi-weekly)	Last day to take the test	Slots available to take t			the test	CBTF closed	

• The three projects are multi-week assessments with their own schedules

Today's Plan...

- 1. Announcements!
- 2. Knitting data classes
- 3. Pandas

Pandas and data frames

Imports the pandas library. We will almost always use an abbreviation...

Instead of saying pandas.read_csv(`file.csv')
we can say
$$pd$$
. $read \sim LSV(`F_1)e.cSV`$

L

This function returns a DataFrame containing the data from **file.csv**

CSV files

To implement df = pd.read_csv(`file.csv')

file.csv must have field names in row 1, and data beginning in row 2.

- bill_week.csv → saved ▼
- 1 ,week,title,artist,rank,last_week,peak_pos,weeks_on_chart
- 2 0,2019-09-21,Truth Hurts,Lizzo,1,1,1,19
- 3 1,2019–09–21,Senorita,Shawn Mendes & Camila Cabello,2,2,1,12
- 4 2,2019-09-21,Goodbyes,Post Malone Featuring Young Thug,3,10,3,10
- 5 3,2019-09-21,Circles,Post Malone,4,7,4,2
- 6 4,2019-09-21,Bad Guy,Billie Eilish,5,3,1,24
- 7 5,2019-09-21,Ran\$om,Lil Tecca,6,4,4,15
- 8 6,2019-09-21,No Guidance,Chris Brown Featuring Drake,7,6,6,14

Processing Data in CPSC 103

- Typical CPSC 103 workflow for CSV files:
 - Identify or create a data type for the information in each column of interest
 - Create Compound data type to store a row
 - Create List[Compound] data type to store the full data set
 - Write read and parse functions to get the data from the file
 - Write analyze and visualize functions to process the data and produce output

• Pros and Cons

- Pro: You think carefully about the information and the data representation before coding
- Pro: You practice your HtDD and HtDF processes and get correct implementations
- Con: Your code is very specific to a single data set
- Con: You can easily manipulate rows, but not columns
- Con: New functions are required for even simple filter or map operations
- Con: Your code is not particularly efficient

Pandas example: Selecting Rows

Subset Observations (Rows)

- df[df.Length > 7]
 Extract rows that meet logical
 criteria.
- df.drop_duplicates() Remove duplicate rows (only considers columns).
- df.head(n)
 - Select first n rows.
- df.tail(n)

Select last n rows.

df.sample(frac=0.5)
Randomly select fraction of rows.
df.sample(n=10)
Randomly select n rows.
df.iloc[10:20]
Select rows by position.
df.nlargest(n, 'value')
Select and order top n entries.
df.nsmallest(n, 'value')
Select and order bottom n entries.

df.nlargest(10, `last_week')

Returns top 10 hits from last week.

df[df['weeks_on_chart'] > 10]

Logic in Python (and pandas)						
<	Less than	!=	Not equal to			
>	Greater than	df.column.isin(<i>values</i>)	Group membership			
==	Equals	pd.isnull(<i>obj</i>)	Is NaN			
<=	Less than or equals	pd.notnull(<i>obj</i>)	ls not NaN			
>=	Greater than or equals	&, ,~,^,df.any(),df.all()	Logical and, or, not, xor, any, all			

Returns all songs that have been on the charts for more than 10 weeks.

Pandas Example: Adding a column

df['gradient'] = df['last_week'] - df['rank']

Adds a column to the DataFrame containing the difference for every row.

So then we can easily perform the map:

```
df[ df['gradient'] > 10 ]
```

Returns all songs that have moved more than 10 spaces in the last week..

Pandas: A sharp blade

- We will learn to use Pandas through our next exploration topic: the Billboard Hot 100
 - Also: The visualization package Matplotlib and how to scrape data from the web
- Compared to our CPSC 103 process, Pandas
 - Allows us to quickly¹ perform complex data manipulations
 - Allows us to quickly¹ generate bugs that are difficult to spot and even harder to remove

¹ In terms of both coding time and execution speed.